ItchyFingaz commited on
Commit
a79d2e0
·
1 Parent(s): c2ded79

Create furniture_mask_node

Browse files
Files changed (1) hide show
  1. furniture_mask_node +59 -0
furniture_mask_node ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # custom_node_furniture_mask.py
2
+ import torch
3
+ import numpy as np
4
+ from PIL import Image
5
+ import torchvision.transforms as T
6
+ from torchvision.models.segmentation import deeplabv3_resnet50
7
+
8
+ class FurnitureMask:
9
+ def __init__(self):
10
+ self.segmentation_model = deeplabv3_resnet50(pretrained=True, progress=False, num_classes=150).eval()
11
+
12
+ @classmethod
13
+ def INPUT_TYPES(cls):
14
+ return {
15
+ "required": {
16
+ "image": ("IMAGE",),
17
+ },
18
+ }
19
+
20
+ RETURN_TYPES = {
21
+ "latent": "LATENT",
22
+ "mask": "MASK",
23
+ }
24
+ FUNCTION = "generate_mask"
25
+
26
+ CATEGORY = "masking"
27
+
28
+ def generate_mask(self, image):
29
+ pil_image = self.tensor2pil(image)
30
+
31
+ furniture_classes = [20, 33, 63, 84, 85, 87, 88, 89, 91, 96, 97, 98, 100, 102, 104, 105, 106, 107, 109, 112, 113, 115, 116, 117, 118, 120, 121, 122, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152]
32
+
33
+ preprocess = T.Compose([
34
+ T.Resize(256),
35
+ T.CenterCrop(224),
36
+ T.ToTensor(),
37
+ T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
38
+ ])
39
+
40
+ input_tensor = preprocess(pil_image).unsqueeze(0)
41
+
42
+ with torch.no_grad():
43
+ output = self.segmentation_model(input_tensor)['out'][0]
44
+ predicted = output.argmax(0)
45
+
46
+ mask = torch.zeros_like(predicted).bool()
47
+ for cls in furniture_classes:
48
+ mask |= (predicted == cls)
49
+
50
+ mask = mask.unsqueeze(0).unsqueeze(0).float()
51
+
52
+ return {"latent": image, "mask": mask}
53
+
54
+ def tensor2pil(self, image):
55
+ return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
56
+
57
+ NODE_CLASS_MAPPINGS = {
58
+ "Furniture Mask": FurnitureMask
59
+ }