Commit
·
a79d2e0
1
Parent(s):
c2ded79
Create furniture_mask_node
Browse files- furniture_mask_node +59 -0
furniture_mask_node
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# custom_node_furniture_mask.py
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import torchvision.transforms as T
|
6 |
+
from torchvision.models.segmentation import deeplabv3_resnet50
|
7 |
+
|
8 |
+
class FurnitureMask:
|
9 |
+
def __init__(self):
|
10 |
+
self.segmentation_model = deeplabv3_resnet50(pretrained=True, progress=False, num_classes=150).eval()
|
11 |
+
|
12 |
+
@classmethod
|
13 |
+
def INPUT_TYPES(cls):
|
14 |
+
return {
|
15 |
+
"required": {
|
16 |
+
"image": ("IMAGE",),
|
17 |
+
},
|
18 |
+
}
|
19 |
+
|
20 |
+
RETURN_TYPES = {
|
21 |
+
"latent": "LATENT",
|
22 |
+
"mask": "MASK",
|
23 |
+
}
|
24 |
+
FUNCTION = "generate_mask"
|
25 |
+
|
26 |
+
CATEGORY = "masking"
|
27 |
+
|
28 |
+
def generate_mask(self, image):
|
29 |
+
pil_image = self.tensor2pil(image)
|
30 |
+
|
31 |
+
furniture_classes = [20, 33, 63, 84, 85, 87, 88, 89, 91, 96, 97, 98, 100, 102, 104, 105, 106, 107, 109, 112, 113, 115, 116, 117, 118, 120, 121, 122, 123, 124, 126, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152]
|
32 |
+
|
33 |
+
preprocess = T.Compose([
|
34 |
+
T.Resize(256),
|
35 |
+
T.CenterCrop(224),
|
36 |
+
T.ToTensor(),
|
37 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
38 |
+
])
|
39 |
+
|
40 |
+
input_tensor = preprocess(pil_image).unsqueeze(0)
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
output = self.segmentation_model(input_tensor)['out'][0]
|
44 |
+
predicted = output.argmax(0)
|
45 |
+
|
46 |
+
mask = torch.zeros_like(predicted).bool()
|
47 |
+
for cls in furniture_classes:
|
48 |
+
mask |= (predicted == cls)
|
49 |
+
|
50 |
+
mask = mask.unsqueeze(0).unsqueeze(0).float()
|
51 |
+
|
52 |
+
return {"latent": image, "mask": mask}
|
53 |
+
|
54 |
+
def tensor2pil(self, image):
|
55 |
+
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
|
56 |
+
|
57 |
+
NODE_CLASS_MAPPINGS = {
|
58 |
+
"Furniture Mask": FurnitureMask
|
59 |
+
}
|