File size: 82,592 Bytes
c2ded79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
# By WASasquatch (Discord: WAS#0263)
#
# Copyright 2023 Jordan Thompson (WASasquatch)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to 
# deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, 
# and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 
# THE SOFTWARE.


import torch, os, sys, subprocess, random, math, hashlib, json, time
import torch.nn as nn
import torchvision.transforms as transforms
import numpy as np
from PIL import Image, ImageFilter, ImageEnhance, ImageOps, ImageDraw, ImageChops
from PIL.PngImagePlugin import PngInfo
from urllib.request import urlopen

sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
sys.path.append('../ComfyUI')

import comfy.samplers
import comfy.sd
import comfy.utils

import comfy_extras.clip_vision

import model_management
import importlib

import nodes

# GLOBALS
MIDAS_INSTALLED = False

#! FUNCTIONS

# Freeze PIP modules
def packages():
    import sys, subprocess
    return [r.decode().split('==')[0] for r in subprocess.check_output([sys.executable, '-m', 'pip', 'freeze']).split()]
    
# Tensor to PIL
def tensor2pil(image):
    return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
            
# Convert PIL to Tensor
def pil2tensor(image):
    return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
    
# PIL Hex
def pil2hex(image):
    return hashlib.sha256(np.array(tensor2pil(image)).astype(np.uint16).tobytes()).hexdigest().hex();
    
# Median Filter
def medianFilter(img, diameter, sigmaColor, sigmaSpace):
    import cv2 as cv
    diameter = int(diameter); sigmaColor = int(sigmaColor); sigmaSpace = int(sigmaSpace)
    img = img.convert('RGB')
    img = cv.cvtColor(np.array(img), cv.COLOR_RGB2BGR)
    img = cv.bilateralFilter(img, diameter, sigmaColor, sigmaSpace)
    img = cv.cvtColor(np.array(img), cv.COLOR_BGR2RGB)
    return Image.fromarray(img).convert('RGB')

# INSTALLATION CLEANUP
# Delete legacy nodes
legacy_was_nodes = ['fDOF_WAS.py','Image_Blank_WAS.py','Image_Blend_WAS.py','Image_Canny_Filter_WAS.py', 'Canny_Filter_WAS.py','Image_Combine_WAS.py','Image_Edge_Detection_WAS.py', 'Image_Film_Grain_WAS.py', 'Image_Filters_WAS.py', 'Image_Flip_WAS.py','Image_Nova_Filter_WAS.py','Image_Rotate_WAS.py','Image_Style_Filter_WAS.py','Latent_Noise_Injection_WAS.py','Latent_Upscale_WAS.py','MiDaS_Depth_Approx_WAS.py','NSP_CLIPTextEncoder.py','Samplers_WAS.py']
legacy_was_nodes_found = []
f_disp = False
for f in legacy_was_nodes:
    node_path_dir = os.getcwd()+'/ComfyUI/custom_nodes/'
    file = f'{node_path_dir}{f}'
    if os.path.exists(file):
        import zipfile
        if not f_disp:
            print('\033[34mWAS Node Suite:\033[0m Found legacy nodes. Archiving legacy nodes...')
            f_disp = True
        legacy_was_nodes_found.append(file)
if legacy_was_nodes_found:
    from os.path import basename
    archive = zipfile.ZipFile(f'{node_path_dir}WAS_Legacy_Nodes_Backup_{round(time.time())}.zip', "w")
    for f in legacy_was_nodes_found:
        archive.write(f, basename(f))
        try:
            os.remove(f)
        except OSError:
            pass
    archive.close()
if f_disp:
    print('\033[34mWAS Node Suite:\033[0m Legacy cleanup complete.')

#! IMAGE FILTER NODES

# IMAGE FILTER ADJUSTMENTS

class WAS_Image_Filters:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "brightness": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.01}),
                "contrast": ("FLOAT", {"default": 1.0, "min": -1.0, "max": 2.0, "step": 0.01}),
                "saturation": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.01}),
                "sharpness": ("FLOAT", {"default": 1.0, "min": -5.0, "max": 5.0, "step": 0.01}),
                "blur": ("INT", {"default": 0, "min": 0, "max": 16, "step": 1}),
                "gaussian_blur": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1024.0, "step": 0.1}),
                "edge_enhance": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "image_filters"

    CATEGORY = "WAS Suite/Image"

    def image_filters(self, image, brightness, contrast, saturation, sharpness, blur, gaussian_blur, edge_enhance):
    
        pil_image = None
        
        # Apply NP Adjustments
        if brightness > 0.0 or brightness < 0.0:
            # Apply brightness
            image = np.clip(image + brightness, 0.0, 1.0)
            
        if contrast > 1.0 or contrast < 1.0:
            # Apply contrast
            image = np.clip(image * contrast, 0.0, 1.0)
            
        # Apply PIL Adjustments
        if saturation > 1.0 or saturation < 1.0:
            #PIL Image
            pil_image = tensor2pil(image)
            # Apply saturation
            pil_image = ImageEnhance.Color(pil_image).enhance(saturation)
           
        if sharpness > 1.0 or sharpness < 1.0:
            # Assign or create PIL Image
            pil_image = pil_image if pil_image else tensor2pil(image)
            # Apply sharpness
            pil_image = ImageEnhance.Sharpness(pil_image).enhance(sharpness)
            
        if blur > 0:
            # Assign or create PIL Image
            pil_image = pil_image if pil_image else tensor2pil(image)
            # Apply blur
            for _ in range(blur):
                pil_image = pil_image.filter(ImageFilter.BLUR)
                
        if gaussian_blur > 0.0:
            # Assign or create PIL Image
            pil_image = pil_image if pil_image else tensor2pil(image)
            # Apply Gaussian blur
            pil_image = pil_image.filter(ImageFilter.GaussianBlur(radius = gaussian_blur))
            
        if edge_enhance > 0.0:
            # Assign or create PIL Image
            pil_image = pil_image if pil_image else tensor2pil(image)
            # Edge Enhancement
            edge_enhanced_img = pil_image.filter(ImageFilter.EDGE_ENHANCE_MORE)
            # Blend Mask
            blend_mask = Image.new(mode = "L", size = pil_image.size, color = (round(edge_enhance * 255)))
            # Composite Original and Enhanced Version
            pil_image = Image.composite(edge_enhanced_img, pil_image, blend_mask)
            # Clean-up
            del blend_mask, edge_enhanced_img
            
        # Output image
        out_image = ( pil2tensor(pil_image) if pil_image else image )

        return ( out_image, )
        
 

# IMAGE STYLE FILTER

class WAS_Image_Style_Filter:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "style": ([
                    "1977",
                    "aden",
                    "brannan",
                    "brooklyn",
                    "clarendon",
                    "earlybird",
                    "gingham",
                    "hudson",
                    "inkwell",
                    "kelvin",
                    "lark",
                    "lofi",
                    "maven",
                    "mayfair",
                    "moon",
                    "nashville",
                    "perpetua",
                    "reyes",
                    "rise",
                    "slumber",
                    "stinson",
                    "toaster",
                    "valencia",
                    "walden",
                    "willow",
                    "xpro2"
                ],),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "image_style_filter"

    CATEGORY = "WAS Suite/Image"

    def image_style_filter(self, image, style):
    
        # Install Pilgram
        if 'pilgram' not in packages():
            print("\033[34mWAS NS:\033[0m Installing Pilgram...")
            subprocess.check_call([sys.executable, '-m', 'pip', '-q', 'install', 'pilgram'])
            
        # Import Pilgram module
        import pilgram
        
        # Convert image to PIL
        image = tensor2pil(image)
        
        # Apply blending
        match style:
            case "1977":
                out_image = pilgram._1977(image)
            case "aden":
                out_image = pilgram.aden(image)
            case "brannan":
                out_image = pilgram.brannan(image)
            case "brooklyn":
                out_image = pilgram.brooklyn(image)
            case "clarendon":
                out_image = pilgram.clarendon(image)
            case "earlybird":
                out_image = pilgram.earlybird(image)
            case "gingham":
                out_image = pilgram.gingham(image)
            case "hudson":
                out_image = pilgram.hudson(image)
            case "inkwell":
                out_image = pilgram.inkwell(image)
            case "kelvin":
                out_image = pilgram.kelvin(image)
            case "lark":
                out_image = pilgram.lark(image)
            case "lofi":
                out_image = pilgram.lofi(image)
            case "maven":
                out_image = pilgram.maven(image)
            case "mayfair":
                out_image = pilgram.mayfair(image)
            case "moon":
                out_image = pilgram.moon(image)
            case "nashville":
                out_image = pilgram.nashville(image)
            case "perpetua":
                out_image = pilgram.perpetua(image)
            case "reyes":
                out_image = pilgram.reyes(image)
            case "rise":
                out_image = pilgram.rise(image)
            case "slumber":
                out_image = pilgram.slumber(image)
            case "stinson":
                out_image = pilgram.stinson(image)
            case "toaster":
                out_image = pilgram.toaster(image)
            case "valencia":
                out_image = pilgram.valencia(image)
            case "walden":
                out_image = pilgram.walden(image)
            case "willow":
                out_image = pilgram.willow(image)
            case "xpro2":
                out_image = pilgram.xpro2(image)
            case _:
                out_image = image
                
        out_image = out_image.convert("RGB")

        return ( torch.from_numpy(np.array(out_image).astype(np.float32) / 255.0).unsqueeze(0), )
        
        
# COMBINE NODE

class WAS_Image_Blending_Mode:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image_a": ("IMAGE",),
                "image_b": ("IMAGE",),
                "mode": ([
                    "add",
                    "color",
                    "color_burn",
                    "color_dodge",
                    "darken",
                    "difference",
                    "exclusion",
                    "hard_light",
                    "hue",
                    "lighten",
                    "multiply",
                    "overlay",
                    "screen",
                    "soft_light"
                ],),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "image_blending_mode"

    CATEGORY = "WAS Suite/Image"

    def image_blending_mode(self, image_a, image_b, mode):
    
        # Install Pilgram
        if 'pilgram' not in packages():
            print("\033[34mWAS NS:\033[0m Installing Pilgram...")
            subprocess.check_call([sys.executable, '-m', 'pip', '-q', 'install', 'pilgram'])
            
        # Import Pilgram module
        import pilgram
        
        # Convert images to PIL
        img_a = tensor2pil(image_a)
        img_b = tensor2pil(image_b)
        
        # Apply blending
        match mode:
            case "color":
                out_image = pilgram.css.blending.color(img_a, img_b)
            case "color_burn":
                out_image = pilgram.css.blending.color_burn(img_a, img_b)
            case "color_dodge":
                out_image = pilgram.css.blending.color_dodge(img_a, img_b)
            case "darken":
                out_image = pilgram.css.blending.darken(img_a, img_b)
            case "difference":
                out_image = pilgram.css.blending.difference(img_a, img_b)
            case "exclusion":
                out_image = pilgram.css.blending.exclusion(img_a, img_b)
            case "hard_light":
                out_image = pilgram.css.blending.hard_light(img_a, img_b)
            case "hue":
                out_image = pilgram.css.blending.hue(img_a, img_b)
            case "lighten":
                out_image = pilgram.css.blending.lighten(img_a, img_b)
            case "multiply":
                out_image = pilgram.css.blending.multiply(img_a, img_b)
            case "add":
                out_image = pilgram.css.blending.normal(img_a, img_b)
            case "overlay":
                out_image = pilgram.css.blending.overlay(img_a, img_b)
            case "screen":
                out_image = pilgram.css.blending.screen(img_a, img_b)
            case "soft_light":
                out_image = pilgram.css.blending.soft_light(img_a, img_b)
            case _:
                out_image = img_a
                
        out_image = out_image.convert("RGB")

        return ( pil2tensor(out_image), )
        
# IMAGE BLEND NODE
        
class WAS_Image_Blend:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image_a": ("IMAGE",),
                "image_b": ("IMAGE",),
                "blend_percentage": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "image_blend"

    CATEGORY = "WAS Suite/Image"

    def image_blend(self, image_a, image_b, blend_percentage):
    
        # Convert images to PIL
        img_a = tensor2pil(image_a)
        img_b = tensor2pil(image_b)

        # Blend image
        blend_mask = Image.new(mode = "L", size = img_a.size, color = (round(blend_percentage * 255)))
        blend_mask = ImageOps.invert(blend_mask)
        img_result = Image.composite(img_a, img_b, blend_mask)
        
        del img_a, img_b, blend_mask

        return ( pil2tensor(img_result), )
        
        
        
# IMAGE THRESHOLD NODE
        
class WAS_Image_Threshold:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "image_threshold"

    CATEGORY = "WAS Suite/Image"

    def image_threshold(self, image, threshold=0.5):
        return ( pil2tensor(self.apply_threshold(tensor2pil(image), threshold)), )
        
        
        
# IMAGE CHROMATIC ABERRATION NODE
        
class WAS_Image_Chromatic_Aberration:

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "red_offset": ("INT", {"default": 2, "min": -255, "max": 255, "step": 1}),
                "green_offset": ("INT", {"default": -1, "min": -255, "max": 255, "step": 1}),
                "blue_offset": ("INT", {"default": 1, "min": -255, "max": 255, "step": 1}),
                "intensity": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),         
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "image_chromatic_aberration"

    CATEGORY = "WAS Suite/Image"

    def image_chromatic_aberration(self, image, red_offset=4, green_offset=2, blue_offset=0, intensity=1):
        return ( pil2tensor(self.apply_chromatic_aberration(tensor2pil(image), red_offset, green_offset, blue_offset, intensity)), )
        

    def apply_chromatic_aberration(self, img, r_offset, g_offset, b_offset, intensity):
        # split the channels of the image
        r, g, b = img.split()

        # apply the offset to each channel
        r_offset_img = ImageChops.offset(r, r_offset, 0)
        g_offset_img = ImageChops.offset(g, 0, g_offset)
        b_offset_img = ImageChops.offset(b, 0, b_offset)

        # blend the original image with the offset channels
        blended_r = ImageChops.blend(r, r_offset_img, intensity)
        blended_g = ImageChops.blend(g, g_offset_img, intensity)
        blended_b = ImageChops.blend(b, b_offset_img, intensity)

        # merge the channels back into an RGB image
        result = Image.merge("RGB", (blended_r, blended_g, blended_b))

        return result

        
        
# IMAGE BLOOM FILTER
        
class WAS_Image_Bloom_Filter:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "radius": ("FLOAT", {"default": 10, "min": 0.0, "max": 1024, "step": 0.1}),
                "intensity": ("FLOAT", {"default": 1, "min": 0.0, "max": 1.0, "step": 0.1}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "image_bloom"

    CATEGORY = "WAS Suite/Image"

    def image_bloom(self, image, radius=0.5, intensity=1.0):
        return ( pil2tensor(self.apply_bloom_filter(tensor2pil(image), radius, intensity)), )
        
    def apply_bloom_filter(self, input_image, radius, bloom_factor):
        # Apply a blur filter to the input image
        blurred_image = input_image.filter(ImageFilter.GaussianBlur(radius=radius))

        # Subtract the blurred image from the input image to create a high-pass filter
        high_pass_filter = ImageChops.subtract(input_image, blurred_image)

        # Create a blurred version of the bloom filter
        bloom_filter = high_pass_filter.filter(ImageFilter.GaussianBlur(radius=radius*2))

        # Adjust brightness and levels of bloom filter
        bloom_filter = ImageEnhance.Brightness(bloom_filter).enhance(2.0)

        # Multiply the bloom image with the bloom factor
        bloom_filter = ImageChops.multiply(bloom_filter, Image.new('RGB', input_image.size, (int(255 * bloom_factor), int(255 * bloom_factor), int(255 * bloom_factor))))

        # Multiply the bloom filter with the original image using the bloom factor
        blended_image = ImageChops.screen(input_image, bloom_filter)

        return blended_image
            
        
        
# IMAGE REMOVE COLOR
        
class WAS_Image_Remove_Color:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "target_red": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}),
                "target_green": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}),
                "target_blue": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}),
                "replace_red": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}),
                "replace_green": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}),
                "replace_blue": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}),
                "clip_threshold": ("INT", {"default": 10, "min": 0, "max": 255, "step": 1}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "image_remove_color"

    CATEGORY = "WAS Suite/Image"

    def image_remove_color(self, image, clip_threshold=10, target_red=255, target_green=255, target_blue=255, replace_red=255, replace_green=255, replace_blue=255):
        return ( pil2tensor(self.apply_remove_color(tensor2pil(image), clip_threshold, (target_red, target_green, target_blue), (replace_red, replace_green, replace_blue))), )
        
    def apply_remove_color(self, image, threshold=10, color=(255, 255, 255), rep_color=(0, 0, 0)):
        # Create a color image with the same size as the input image
        color_image = Image.new('RGB', image.size, color)
        
        # Calculate the difference between the input image and the color image
        diff_image = ImageChops.difference(image, color_image)
        
        # Convert the difference image to grayscale
        gray_image = diff_image.convert('L')
        
        # Apply a threshold to the grayscale difference image
        mask_image = gray_image.point(lambda x: 255 if x > threshold else 0)
        
        # Invert the mask image
        mask_image = ImageOps.invert(mask_image)
        
        # Apply the mask to the original image
        result_image = Image.composite(Image.new('RGB', image.size, rep_color), image, mask_image)
        
        return result_image


# IMAGE BLEND MASK NODE
        
class WAS_Image_Blend_Mask:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image_a": ("IMAGE",),
                "image_b": ("IMAGE",),
                "mask": ("IMAGE",),
                "blend_percentage": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "image_blend_mask"

    CATEGORY = "WAS Suite/Image"

    def image_blend_mask(self, image_a, image_b, mask, blend_percentage):
    
        # Convert images to PIL
        img_a = tensor2pil(image_a)
        img_b = tensor2pil(image_b)
        mask = ImageOps.invert(tensor2pil(mask).convert('L'))
        
        # Mask image
        masked_img = Image.composite(img_a, img_b, mask.resize(img_a.size))

        # Blend image
        blend_mask = Image.new(mode = "L", size = img_a.size, color = (round(blend_percentage * 255)))
        blend_mask = ImageOps.invert(blend_mask)
        img_result = Image.composite(img_a, masked_img, blend_mask)
        
        del img_a, img_b, blend_mask, mask

        return ( pil2tensor(img_result), )


# IMAGE BLANK NOE


class WAS_Image_Blank:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": { 
                        "width": ("INT", {"default": 512, "min": 8, "max": 4096, "step": 1}),
                        "height": ("INT", {"default": 512, "min": 8, "max": 4096, "step": 1}),
                        "red": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}),
                        "green": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}),
                        "blue": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}),
                    }
                }
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "blank_image"

    CATEGORY = "WAS Suite/Image"

    def blank_image(self, width, height, red, green, blue): 
    
        # Ensure multiples
        width = ( width // 8 ) * 8
        height = ( height // 8 ) * 8

        # Blend image
        blank = Image.new(mode = "RGB", size = (width, height), color = (red, green, blue))

        return ( pil2tensor(blank), )
        
        
# IMAGE HIGH PASS

class WAS_Image_High_Pass_Filter:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": { 
                        "image": ("IMAGE",),
                        "radius": ("INT", {"default": 10, "min": 1, "max": 500, "step": 1}),
                        "strength": ("FLOAT", {"default": 1.5, "min": 0.0, "max": 255.0, "step": 0.1})
                    }
                }
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "high_pass"

    CATEGORY = "WAS Suite/Image"

    def high_pass(self, image, radius=10, strength=1.5): 
        hpf = tensor2pil(image).convert('L')
        return ( pil2tensor(self.apply_hpf(hpf.convert('RGB'), radius, strength)), )
        
    def apply_hpf(self, img, radius=10, strength=1.5):

        # pil to numpy
        img_arr = np.array(img).astype('float')

        # Apply a Gaussian blur with the given radius
        blurred_arr = np.array(img.filter(ImageFilter.GaussianBlur(radius=radius))).astype('float')

        # Apply the High Pass Filter
        hpf_arr = img_arr - blurred_arr
        hpf_arr = np.clip(hpf_arr * strength, 0, 255).astype('uint8')

        # Convert the numpy array back to a PIL image and return it
        return Image.fromarray(hpf_arr, mode='RGB')
        

# IMAGE LEVELS NODE

class WAS_Image_Levels:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": { 
                        "image": ("IMAGE",),
                        "black_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max":255.0, "step": 0.1}),
                        "mid_level": ("FLOAT", {"default": 127.5, "min": 0.0, "max": 255.0, "step": 0.1}),
                        "white_level": ("FLOAT", {"default": 255, "min": 0.0, "max": 255.0, "step": 0.1}),
                    }
                }
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "apply_image_levels"

    CATEGORY = "WAS Suite/Image"

    def apply_image_levels(self, image, black_level, mid_level, white_level): 
       
       # Convert image to PIL
       image = tensor2pil(image)
 
       #apply image levels
       #image = self.adjust_levels(image, black_level, mid_level, white_level)
       
       levels = self.AdjustLevels(black_level, mid_level, white_level)
       image = levels.adjust(image)
       
       # Return adjust image tensor
       return ( pil2tensor(image), )
       
    def adjust_levels(self, image, black=0.0, mid=1.0, white=255):
        """
        Adjust the black, mid, and white levels of an RGB image.
        """
        # Create a new empty image with the same size and mode as the original image
        result = Image.new(image.mode, image.size)

        # Check that the mid value is within the valid range
        if mid < 0 or mid > 1:
            raise ValueError("mid value must be between 0 and 1")

        # Create a lookup table to map the pixel values to new values
        lut = []
        for i in range(256):
            if i < black:
                lut.append(0)
            elif i > white:
                lut.append(255)
            else:
                lut.append(int(((i - black) / (white - black)) ** mid * 255.0))

        # Split the image into its red, green, and blue channels
        r, g, b = image.split()

        # Apply the lookup table to each channel
        r = r.point(lut)
        g = g.point(lut)
        b = b.point(lut)

        # Merge the channels back into an RGB image
        result = Image.merge("RGB", (r, g, b))

        return result
        
    class AdjustLevels:
        def __init__(self, min_level, mid_level, max_level):
            self.min_level = min_level
            self.mid_level = mid_level
            self.max_level = max_level

        def adjust(self, im):
            # load the image

            # convert the image to a numpy array
            im_arr = np.array(im)

            # apply the min level adjustment
            im_arr[im_arr < self.min_level] = self.min_level

            # apply the mid level adjustment
            im_arr = (im_arr - self.min_level) * (255 / (self.max_level - self.min_level))
            im_arr[im_arr < 0] = 0
            im_arr[im_arr > 255] = 255
            im_arr = im_arr.astype(np.uint8)

            # apply the max level adjustment
            im = Image.fromarray(im_arr)
            im = ImageOps.autocontrast(im, cutoff=self.max_level)

            return im


# FILM GRAIN NODE

class WAS_Film_Grain:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": { 
                        "image": ("IMAGE",),
                        "density": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 1.0, "step": 0.01}),
                        "intensity": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 1.0, "step": 0.01}),
                        "highlights": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 255.0, "step": 0.01}),
                        "supersample_factor": ("INT", {"default": 4, "min": 1, "max": 8, "step": 1})
                    }
                }
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "film_grain"

    CATEGORY = "WAS Suite/Image"

    def film_grain(self, image, density, intensity, highlights, supersample_factor): 
        return ( pil2tensor(self.apply_film_grain(tensor2pil(image), density, intensity, highlights, supersample_factor)), )

    def apply_film_grain(self, img, density=0.1, intensity=1.0, highlights=1.0, supersample_factor = 4):
        """
        Apply grayscale noise with specified density, intensity, and highlights to a PIL image.
        """
        # Convert the image to grayscale
        img_gray = img.convert('L')
        
        # Super Resolution noise image
        original_size = img.size
        img_gray = img_gray.resize(((img.size[0] * supersample_factor), (img.size[1] * supersample_factor)), Image.Resampling(2))
        
        # Calculate the number of noise pixels to add
        num_pixels = int(density * img_gray.size[0] * img_gray.size[1])

        # Create a list of noise pixel positions
        noise_pixels = []
        for i in range(num_pixels):
            x = random.randint(0, img_gray.size[0]-1)
            y = random.randint(0, img_gray.size[1]-1)
            noise_pixels.append((x, y))

        # Apply the noise to the grayscale image
        for x, y in noise_pixels:
            value = random.randint(0, 255)
            img_gray.putpixel((x, y), value)

        # Convert the grayscale image back to RGB
        img_noise = img_gray.convert('RGB')
        
        # Blur noise image
        img_noise = img_noise.filter(ImageFilter.GaussianBlur(radius = 0.125))
        
        # Downsize noise image
        img_noise = img_noise.resize(original_size, Image.Resampling(1))
        
        # Sharpen super resolution result
        img_noise = img_noise.filter(ImageFilter.EDGE_ENHANCE_MORE)

        # Blend the noisy color image with the original color image
        img_final = Image.blend(img, img_noise, intensity)

        # Adjust the highlights
        enhancer = ImageEnhance.Brightness(img_final)
        img_highlights = enhancer.enhance(highlights)

        # Return the final image
        return img_highlights
  

# IMAGE FLIP NODE
  
class WAS_Image_Flip:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "mode": (["horizontal", "vertical",],),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "image_flip"

    CATEGORY = "WAS Suite/Image"

    def image_flip(self, image, mode):
        
        # PIL Image
        image = tensor2pil(image)
        
        # Rotate Image
        if mode == 'horizontal':
            image = image.transpose(0)
        if mode == 'vertical':
            image = image.transpose(1)
        
        return ( pil2tensor(image), )


class WAS_Image_Rotate:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "mode": (["transpose", "internal",],),
                "rotation": ("INT", {"default": 0, "min": 0, "max": 360, "step": 90}),
                "sampler": (["nearest", "bilinear", "bicubic"],),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "image_rotate"

    CATEGORY = "WAS Suite/Image"

    def image_rotate(self, image, mode, rotation, sampler):
        
        # PIL Image
        image = tensor2pil(image)
        
        # Check rotation
        if rotation > 360:
            rotation = int(360)
        if (rotation % 90 != 0):
            rotation = int((rotation//90)*90);
            
        # Set Sampler
        match sampler:
            case 'nearest':
                sampler = PIL.Image.NEAREST
            case 'bicubic':
                sampler = PIL.Image.BICUBIC
            case 'bilinear':
                sampler = PIL.Image.BILINEAR
        
        # Rotate Image
        if mode == 'internal':
            image = image.rotate(rotation, sampler)
        else:
            rot = int(rotation / 90)
            for _ in range(rot):
                image = image.transpose(2)
        
        return ( torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0), )


# IMAGE NOVA SINE FILTER

class WAS_Image_Nova_Filter:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "amplitude": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.001}),
                "frequency": ("FLOAT", {"default": 3.14, "min": 0.0, "max": 100.0, "step": 0.001}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "nova_sine"

    CATEGORY = "WAS Suite/Image"

    def nova_sine(self, image, amplitude, frequency):
        
        # Convert image to numpy
        img = tensor2pil(image)
        
        # Convert the image to a numpy array
        img_array = np.array(img)

        # Define a sine wave function
        def sine(x, freq, amp):
            return amp * np.sin(2 * np.pi * freq * x)

        # Calculate the sampling frequency of the image
        resolution = img.info.get('dpi')  # PPI
        physical_size = img.size  # pixels

        if resolution is not None:
            # Convert PPI to pixels per millimeter (PPM)
            ppm = 25.4 / resolution
            physical_size = tuple(int(pix * ppm) for pix in physical_size)

        # Set the maximum frequency for the sine wave
        max_freq = img.width / 2
        
        # Ensure frequency isn't outside visual representable range
        if frequency > max_freq:
            frequency = max_freq

        # Apply levels to the image using the sine function
        for i in range(img_array.shape[0]):
            for j in range(img_array.shape[1]):
                for k in range(img_array.shape[2]):
                    img_array[i,j,k] = int(sine(img_array[i,j,k]/255, frequency, amplitude) * 255)

        return ( torch.from_numpy(img_array.astype(np.float32) / 255.0).unsqueeze(0), )


# IMAGE CANNY FILTER


class WAS_Canny_Filter:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "enable_threshold": (['false', 'true'],),
                "threshold_low": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                "threshold_high": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "canny_filter"

    CATEGORY = "WAS Suite/Image"

    def canny_filter(self, image, threshold_low, threshold_high, enable_threshold):

        self.install_opencv()
        
        if enable_threshold == 'false':
            threshold_low = None
            threshold_high = None

        image_canny = Image.fromarray(self.Canny_detector(255. * image.cpu().numpy().squeeze(), threshold_low, threshold_high)).convert('RGB')

        return ( pil2tensor(image_canny), )
        
    # Defining the Canny Detector function
    # From: https://www.geeksforgeeks.org/implement-canny-edge-detector-in-python-using-opencv/
       
    # here weak_th and strong_th are thresholds for
    # double thresholding step
    def Canny_detector(self, img, weak_th = None, strong_th = None):
        
        import cv2
          
        # conversion of image to grayscale
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
           
        # Noise reduction step
        img = cv2.GaussianBlur(img, (5, 5), 1.4)
           
        # Calculating the gradients
        gx = cv2.Sobel(np.float32(img), cv2.CV_64F, 1, 0, 3)
        gy = cv2.Sobel(np.float32(img), cv2.CV_64F, 0, 1, 3)
          
        # Conversion of Cartesian coordinates to polar 
        mag, ang = cv2.cartToPolar(gx, gy, angleInDegrees = True)
           
        # setting the minimum and maximum thresholds 
        # for double thresholding
        mag_max = np.max(mag)
        if not weak_th:weak_th = mag_max * 0.1
        if not strong_th:strong_th = mag_max * 0.5
          
        # getting the dimensions of the input image  
        height, width = img.shape
           
        # Looping through every pixel of the grayscale 
        # image
        for i_x in range(width):
            for i_y in range(height):
                   
                grad_ang = ang[i_y, i_x]
                grad_ang = abs(grad_ang-180) if abs(grad_ang)>180 else abs(grad_ang)
                   
                # selecting the neighbours of the target pixel
                # according to the gradient direction
                # In the x axis direction
                if grad_ang<= 22.5:
                    neighb_1_x, neighb_1_y = i_x-1, i_y
                    neighb_2_x, neighb_2_y = i_x + 1, i_y
                  
                # top right (diagonal-1) direction
                elif grad_ang>22.5 and grad_ang<=(22.5 + 45):
                    neighb_1_x, neighb_1_y = i_x-1, i_y-1
                    neighb_2_x, neighb_2_y = i_x + 1, i_y + 1
                  
                # In y-axis direction
                elif grad_ang>(22.5 + 45) and grad_ang<=(22.5 + 90):
                    neighb_1_x, neighb_1_y = i_x, i_y-1
                    neighb_2_x, neighb_2_y = i_x, i_y + 1
                  
                # top left (diagonal-2) direction
                elif grad_ang>(22.5 + 90) and grad_ang<=(22.5 + 135):
                    neighb_1_x, neighb_1_y = i_x-1, i_y + 1
                    neighb_2_x, neighb_2_y = i_x + 1, i_y-1
                  
                # Now it restarts the cycle
                elif grad_ang>(22.5 + 135) and grad_ang<=(22.5 + 180):
                    neighb_1_x, neighb_1_y = i_x-1, i_y
                    neighb_2_x, neighb_2_y = i_x + 1, i_y
                   
                # Non-maximum suppression step
                if width>neighb_1_x>= 0 and height>neighb_1_y>= 0:
                    if mag[i_y, i_x]<mag[neighb_1_y, neighb_1_x]:
                        mag[i_y, i_x]= 0
                        continue
       
                if width>neighb_2_x>= 0 and height>neighb_2_y>= 0:
                    if mag[i_y, i_x]<mag[neighb_2_y, neighb_2_x]:
                        mag[i_y, i_x]= 0
       
        weak_ids = np.zeros_like(img)
        strong_ids = np.zeros_like(img)              
        ids = np.zeros_like(img)
           
        # double thresholding step
        for i_x in range(width):
            for i_y in range(height):
                  
                grad_mag = mag[i_y, i_x]
                  
                if grad_mag<weak_th:
                    mag[i_y, i_x]= 0
                elif strong_th>grad_mag>= weak_th:
                    ids[i_y, i_x]= 1
                else:
                    ids[i_y, i_x]= 2
           
        # finally returning the magnitude of
        # gradients of edges
        return mag
        
    def install_opencv(self):
        if 'opencv-python' not in packages():
            print("\033[34mWAS NS:\033[0m Installing CV2...")
            subprocess.check_call([sys.executable, '-m', 'pip', '-q', 'install', 'opencv-python'])


# IMAGE EDGE DETECTION

class WAS_Image_Edge:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "mode": (["normal", "laplacian"],),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "image_edges"

    CATEGORY = "WAS Suite/Image"

    def image_edges(self, image, mode):
    
        # Convert image to PIL
        image = tensor2pil(image)

        # Detect edges
        match mode:
            case "normal":
                image = image.filter(ImageFilter.FIND_EDGES)
            case "laplacian":
                image = image.filter(ImageFilter.Kernel((3, 3), (-1, -1, -1, -1, 8,
                                              -1, -1, -1, -1), 1, 0))
            case _:
                image = image

        return ( torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0), )
     

# IMAGE FDOF NODE

class WAS_Image_fDOF:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "depth": ("IMAGE",),
                "mode": (["mock","gaussian","box"],),
                "radius": ("INT", {"default": 8, "min": 1, "max": 128, "step": 1}),
                "samples": ("INT", {"default": 1, "min": 1, "max": 3, "step": 1}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "fdof_composite"

    CATEGORY = "WAS Suite/Image"

    def fdof_composite(self, image, depth, radius, samples, mode):
    
        if 'opencv-python' not in packages():
            print("\033[34mWAS NS:\033[0m Installing CV2...")
            subprocess.check_call([sys.executable, '-m', 'pip', '-q', 'install', 'opencv-python'])
        
        import cv2 as cv

        #Convert tensor to a PIL Image
        i = 255. * image.cpu().numpy().squeeze()
        img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
        d = 255. * depth.cpu().numpy().squeeze()
        depth_img = Image.fromarray(np.clip(d, 0, 255).astype(np.uint8))

        #Apply Fake Depth of Field
        fdof_image = self.portraitBlur(img, depth_img, radius, samples, mode)

        return ( torch.from_numpy(np.array(fdof_image).astype(np.float32) / 255.0).unsqueeze(0), )

    def portraitBlur(self, img, mask, radius=5, samples=1, mode = 'mock'):
        mask = mask.resize(img.size).convert('L')
        if mode == 'mock':
            bimg = medianFilter(img, radius, (radius * 1500), 75)
        elif mode == 'gaussian':
            bimg = img.filter(ImageFilter.GaussianBlur(radius = radius))
        elif mode == 'box':
            bimg = img.filter(ImageFilter.BoxBlur(radius))
        bimg.convert(img.mode)
        rimg = None
        if samples > 1:
            for i in range(samples):
                if i == 0:
                    rimg = Image.composite(img, bimg, mask)
                else:
                    rimg = Image.composite(rimg, bimg, mask)
        else:
            rimg = Image.composite(img, bimg, mask).convert('RGB')
        
        return rimg
        
    # TODO: Implement lens_blur mode attempt
    def lens_blur(img, radius, amount, mask=None):
        """Applies a lens shape blur effect on an image.

        Args:
            img (numpy.ndarray): The input image as a numpy array.
            radius (float): The radius of the lens shape.
            amount (float): The amount of blur to be applied.
            mask (numpy.ndarray): An optional mask image specifying where to apply the blur.

        Returns:
            numpy.ndarray: The blurred image as a numpy array.
        """
        # Create a lens shape kernel.
        kernel = cv2.getGaussianKernel(ksize=int(radius * 10), sigma=0)
        kernel = np.dot(kernel, kernel.T)

        # Normalize the kernel.
        kernel /= np.max(kernel)

        # Create a circular mask for the kernel.
        mask_shape = (int(radius * 2), int(radius * 2))
        mask = np.ones(mask_shape) if mask is None else cv2.resize(mask, mask_shape, interpolation=cv2.INTER_LINEAR)
        mask = cv2.GaussianBlur(mask, (int(radius * 2) + 1, int(radius * 2) + 1), radius / 2)
        mask /= np.max(mask)

        # Adjust kernel and mask size to match input image.
        ksize_x = img.shape[1] // (kernel.shape[1] + 1)
        ksize_y = img.shape[0] // (kernel.shape[0] + 1)
        kernel = cv2.resize(kernel, (ksize_x, ksize_y), interpolation=cv2.INTER_LINEAR)
        kernel = cv2.copyMakeBorder(kernel, 0, img.shape[0] - kernel.shape[0], 0, img.shape[1] - kernel.shape[1], cv2.BORDER_CONSTANT, value=0)
        mask = cv2.resize(mask, (ksize_x, ksize_y), interpolation=cv2.INTER_LINEAR)
        mask = cv2.copyMakeBorder(mask, 0, img.shape[0] - mask.shape[0], 0, img.shape[1] - mask.shape[1], cv2.BORDER_CONSTANT, value=0)

        # Apply the lens shape blur effect on the image.
        blurred = cv2.filter2D(img, -1, kernel)
        blurred = cv2.filter2D(blurred, -1, mask * amount)

        if mask is not None:
            # Apply the mask to the original image.
            mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
            img_masked = img * mask
            # Combine the masked image with the blurred image.
            blurred = img_masked * (1 - mask) + blurred

        return blurred
        
        
# IMAGE MEDIAN FILTER NODE
        
class WAS_Image_Median_Filter:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "diameter": ("INT", {"default": 2.0, "min": 0.1, "max": 255, "step": 1}),
                "sigma_color": ("FLOAT", {"default": 10.0, "min": -255.0, "max": 255.0, "step": 0.1}),
                "sigma_space": ("FLOAT", {"default": 10.0, "min": -255.0, "max": 255.0, "step": 0.1}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "apply_median_filter"

    CATEGORY = "WAS Suite/Image"

    def apply_median_filter(self, image, diameter, sigma_color, sigma_space):
        
        # Numpy Image
        image = tensor2pil(image)
        
        # Apply Median Filter effect
        image = medianFilter(image, diameter, sigma_color, sigma_space)
        
        return ( pil2tensor(image), )

# IMAGE SELECT COLOR
        
class WAS_Image_Select_Color:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "red": ("INT", {"default": 255.0, "min": 0.0, "max": 255.0, "step": 0.1}),
                "green": ("INT", {"default": 255.0, "min": 0.0, "max": 255.0, "step": 0.1}),
                "blue": ("INT", {"default": 255.0, "min": 0.0, "max": 255.0, "step": 0.1}),
                "variance": ("INT", {"default": 10, "min": 0, "max": 255, "step": 1}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "select_color"

    CATEGORY = "WAS Suite/Image"

    def select_color(self, image, red=255, green=255, blue=255, variance=10):
    
        if 'opencv-python' not in packages():
            print("\033[34mWAS NS:\033[0m Installing CV2...")
            subprocess.check_call([sys.executable, '-m', 'pip', '-q', 'install', 'opencv-python'])
        
        image = self.color_pick(tensor2pil(image), red, green, blue, variance)
        
        return ( pil2tensor(image), )
        

    def color_pick(self, image, red=255, green=255, blue=255, variance=10):
        # Convert image to RGB mode
        image = image.convert('RGB')

        # Create a new black image of the same size as the input image
        selected_color = Image.new('RGB', image.size, (0,0,0))

        # Get the width and height of the image
        width, height = image.size

        # Loop through every pixel in the image
        for x in range(width):
            for y in range(height):
                # Get the color of the pixel
                pixel = image.getpixel((x,y))
                r,g,b = pixel

                # Check if the pixel is within the specified color range
                if ((r >= red-variance) and (r <= red+variance) and
                    (g >= green-variance) and (g <= green+variance) and
                    (b >= blue-variance) and (b <= blue+variance)):
                    # Set the pixel in the selected_color image to the RGB value of the pixel
                    selected_color.putpixel((x,y),(r,g,b))

        # Return the selected color image
        return selected_color
       
# IMAGE CONVERT TO CHANNEL
        
class WAS_Image_Select_Channel:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "channel": (['red','green','blue'],),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "select_channel"

    CATEGORY = "WAS Suite/Image"

    def select_channel(self, image, channel='red'):
        
        image = self.convert_to_single_channel(tensor2pil(image), channel)
        
        return ( pil2tensor(image), )
        

    def convert_to_single_channel(self, image, channel='red'):
        
        # Convert to RGB mode to access individual channels
        image = image.convert('RGB')

        # Extract the desired channel and convert to greyscale
        if channel == 'red':
            channel_img = image.split()[0].convert('L')
        elif channel == 'green':
            channel_img = image.split()[1].convert('L')
        elif channel == 'blue':
            channel_img = image.split()[2].convert('L')
        else:
            raise ValueError("Invalid channel option. Please choose 'red', 'green', or 'blue'.")

        # Convert the greyscale channel back to RGB mode
        channel_img = Image.merge('RGB', (channel_img, channel_img, channel_img))

        return channel_img
        
        
        
# IMAGE CONVERT TO CHANNEL
        
class WAS_Image_RGB_Merge:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "red_channel": ("IMAGE",),
                "green_channel": ("IMAGE",),
                "blue_channel": ("IMAGE",),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "merge_channels"

    CATEGORY = "WAS Suite/Image"

    def merge_channels(self, red_channel, green_channel, blue_channel):
        
        # Apply mix rgb channels
        image = self.mix_rgb_channels(tensor2pil(red_channel).convert('L'), tensor2pil(green_channel).convert('L'), tensor2pil(blue_channel).convert('L'))
        
        return ( pil2tensor(image), )
        

    def mix_rgb_channels(self, red, green, blue):
        # Create an empty image with the same size as the channels
        width, height = red.size; merged_img = Image.new('RGB', (width, height))

        # Merge the channels into the new image
        merged_img = Image.merge('RGB', (red, green, blue))

        return merged_img
        

# Image Save (NSP Compatible)
# Originally From ComfyUI/nodes.py
        
class WAS_Image_Save:
    def __init__(self):
        self.output_dir = os.path.join(os.getcwd()+'/ComfyUI', "output")

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": {
                        "images": ("IMAGE", ),
                        "output_path": ("STRING", {"default": './ComfyUI/output', "multiline": False}),
                        "filename_prefix": ("STRING", {"default": "ComfyUI"}),
                        "extension": (['png', 'jpeg', 'tiff', 'gif'], ),
                        "quality": ("INT", {"default": 100, "min": 1, "max": 100, "step": 1}),
                    },
                    "hidden": {
                        "prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"
                    },
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

    CATEGORY = "WAS Suite/IO"

    def save_images(self, images, output_path='', filename_prefix="ComfyUI", extension='png', quality=100, prompt=None, extra_pnginfo=None):
        def map_filename(filename):
            prefix_len = len(filename_prefix)
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
        
        # Setup custom path or default
        if output_path.strip() != '':
            if not os.path.exists(output_path.strip()):
                print(f'\033[34mWAS NS\033[0m Error: The path `{output_path.strip()}` specified doesn\'t exist! Defaulting to `{self.output_dir}` directory.')
            else:
                self.output_dir = os.path.normpath(output_path.strip())
                print(self.output_dir)
        
        # Define counter for files found
        try:
            counter = max(filter(lambda a: a[1][:-1] == filename_prefix and a[1][-1] == "_", map(map_filename, os.listdir(self.output_dir))))[0] + 1
        except ValueError:
            counter = 1
        except FileNotFoundError:
            os.mkdir(self.output_dir)
            counter = 1

        paths = list()
        for image in images:
            i = 255. * image.cpu().numpy()
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
            file = f"{filename_prefix}_{counter:05}_.{extension}"
            if extension == 'png':
                img.save(os.path.join(self.output_dir, file), pnginfo=metadata, optimize=True)
            elif extension == 'webp':
                img.save(os.path.join(self.output_dir, file), quality=quality)
            elif extension == 'jpeg':
                img.save(os.path.join(self.output_dir, file), quality=quality, optimize=True)
            elif extension == 'tiff':
                img.save(os.path.join(self.output_dir, file), quality=quality, optimize=True)
            else:
                img.save(os.path.join(self.output_dir, file))
            paths.append(file)
            counter += 1
        return { "ui": { "images": paths } }
        

# LOAD IMAGE NODE
class WAS_Load_Image:

    def __init__(self):
        self.input_dir = os.path.join(os.getcwd()+'/ComfyUI', "input")
        
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"image_path": ("STRING", {"default": './ComfyUI/input/example.png', "multiline": False}),}
                }

    CATEGORY = "WAS Suite/IO"

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "load_image"
    def load_image(self, image_path):
        try:
            i = Image.open(image_path)
        except OSError:
            print(f'\033[34mWAS NS\033[0m Error: The image `{output_path.strip()}` specified doesn\'t exist!')
            i = Image.new(mode='RGB', size=(512,512), color=(0,0,0))
        image = i.convert("RGB")
        image = np.array(image).astype(np.float32) / 255.0
        image = torch.from_numpy(image)[None,]
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)

    @classmethod
    def IS_CHANGED(s, image_path):
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
        

# TENSOR TO IMAGE NODE

class WAS_Tensor_Batch_to_Image:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "images_batch": ("IMAGE",),
                "batch_image_number": ("INT", {"default": 0, "min": 0, "max": 64, "step": 1}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "tensor_batch_to_image"

    CATEGORY = "WAS Suite/Latent"

    def tensor_batch_to_image(self, images_batch=None, batch_image_number=0):
    
        count = 0
        for _ in images_batch:
            if batch_image_number == count:
                return ( images_batch[batch_image_number].unsqueeze(0), )
            count = count+1
        
        print(f"\033[34mWAS NS\033[0m Error: Batch number `{batch_image_number}` is not defined, returning last image")
        return( images_batch[-1].unsqueeze(0), )


#! LATENT NODES

# IMAGE TO MASK

class WAS_Image_To_Mask:

    def __init__(s):
        pass
        
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"image": ("IMAGE",),
                    "channel": (["alpha", "red", "green", "blue"], ),}
                }

    CATEGORY = "WAS Suite/Latent"

    RETURN_TYPES = ("MASK",)
    
    FUNCTION = "image_to_mask"
    
    def image_to_mask(self, image, channel):
    
        img = tensor2pil(image)
        
        mask = None
        c = channel[0].upper()
        if c in img.getbands():
            mask = np.array(img.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
            
        return ( mask, )


# LATENT UPSCALE NODE

class WAS_Latent_Upscale:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "mode": (["bilinear", "bicubic", "trilinear"],),
                              "factor": ("FLOAT", {"default": 2.0, "min": 0.1, "max": 8.0, "step": 0.1}),
                              "align": (["true", "false"], )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "latent_upscale"

    CATEGORY = "WAS Suite/Latent"

    def latent_upscale(self, samples, mode, factor, align):
        s = samples.copy()
        s["samples"] = torch.nn.functional.interpolate(s['samples'], scale_factor=factor, mode=mode, align_corners=( True if align == 'true' else False ))
        return (s,)
        
# LATENT NOISE INJECTION NODE
        
class WAS_Latent_Noise:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": {
                        "samples": ("LATENT",), 
                        "noise_std": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }
                }

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "inject_noise"
    
    CATEGORY = "WAS Suite/Latent"

    def inject_noise(self, samples, noise_std):
        s = samples.copy()
        noise = torch.randn_like(s["samples"]) * noise_std
        s["samples"] = s["samples"] + noise
        return (s,)
        
        
# MIDAS DEPTH APPROXIMATION NODE

class MiDaS_Depth_Approx:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "use_cpu": (["false", "true"],),
                "midas_model": (["DPT_Large", "DPT_Hybrid", "DPT_Small"],),
                "invert_depth": (["false", "true"],),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "midas_approx"
    
    CATEGORY = "WAS Suite/Image"

    def midas_approx(self, image, use_cpu, midas_model, invert_depth):
    
        global MIDAS_INSTALLED
 
        if not MIDAS_INSTALLED:
            self.install_midas()
            
        import cv2 as cv
    
        # Convert the input image tensor to a PIL Image
        i = 255. * image.cpu().numpy().squeeze()
        img = i

        print("\033[34mWAS NS:\033[0m Downloading and loading MiDaS Model...")
        midas = torch.hub.load("intel-isl/MiDaS", midas_model, trust_repo=True)
        device = torch.device("cuda") if torch.cuda.is_available() and use_cpu == 'false' else torch.device("cpu")
        
        print('\033[34mWAS NS:\033[0m MiDaS is using device:', device)

        midas.to(device).eval()
        midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")

        if midas_model == "DPT_Large" or midas_model == "DPT_Hybrid":
            transform = midas_transforms.dpt_transform
        else:
            transform = midas_transforms.small_transform

        img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
        input_batch = transform(img).to(device)
        
        print('\033[34mWAS NS:\033[0m Approximating depth from image.')

        with torch.no_grad():
            prediction = midas(input_batch)
            prediction = torch.nn.functional.interpolate(
                prediction.unsqueeze(1),
                size=img.shape[:2],
                mode="bicubic",
                align_corners=False,
            ).squeeze()

        if invert_depth == 'true':
            depth = ( 255 - prediction.cpu().numpy().astype(np.uint8) )
            depth = depth.astype(np.float32)
        else:
            depth = prediction.cpu().numpy().astype(np.float32)
        depth = depth * 255 / (np.max(depth)) / 255
        # Invert depth map
        depth = cv.cvtColor(depth, cv.COLOR_GRAY2RGB)
        
        tensor = torch.from_numpy( depth )[None,]
        tensors = ( tensor, )

        del midas, device, midas_transforms
        del transform, img, input_batch, prediction
        
        return  tensors
        
    def install_midas(self):
        global MIDAS_INSTALLED
        if 'timm' not in packages():
            print("\033[34mWAS NS:\033[0m Installing timm...")
            subprocess.check_call([sys.executable, '-m', 'pip', '-q', 'install', 'timm'])
        if 'opencv-python' not in packages():
            print("\033[34mWAS NS:\033[0m Installing CV2...")
            subprocess.check_call([sys.executable, '-m', 'pip', '-q', 'install', 'opencv-python'])
        MIDAS_INSTALLED = True        
        
# MIDAS REMOVE BACKGROUND/FOREGROUND NODE

class MiDaS_Background_Foreground_Removal:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "use_cpu": (["false", "true"],),
                "midas_model": (["DPT_Large", "DPT_Hybrid", "DPT_Small"],),
                "remove": (["background", "foregroud"],),
                "threshold": (["false", "true"],),
                "threshold_low": ("FLOAT", {"default": 10, "min": 0, "max": 255, "step": 1}),
                "threshold_mid": ("FLOAT", {"default": 200, "min": 0, "max": 255, "step": 1}),
                "threshold_high": ("FLOAT", {"default": 210, "min": 0, "max": 255, "step": 1}),
                "smoothing": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 16.0, "step": 0.01}),
                "background_red": ("INT", {"default": 0, "min": 0, "max": 255, "step": 1}),
                "background_green": ("INT", {"default": 0, "min": 0, "max": 255, "step": 1}),
                "background_blue": ("INT", {"default": 0, "min": 0, "max": 255, "step": 1}),
            },
        }

    RETURN_TYPES = ("IMAGE","IMAGE")
    FUNCTION = "midas_remove"
    
    CATEGORY = "WAS Suite/Image"

    def midas_remove(self,
                    image,  
                    midas_model,
                    use_cpu='false',                    
                    remove='background', 
                    threshold='false',
                    threshold_low=0,
                    threshold_mid=127,
                    threshold_high=255,
                    smoothing=0.25,
                    background_red=0, 
                    background_green=0, 
                    background_blue=0):
    
        global MIDAS_INSTALLED
 
        if not MIDAS_INSTALLED:
            self.install_midas()
            
        import cv2 as cv
    
        # Convert the input image tensor to a numpy and PIL Image
        i = 255. * image.cpu().numpy().squeeze()
        img = i
        # Original image
        img_original = tensor2pil(image).convert('RGB')

        print("\033[34mWAS NS:\033[0m Downloading and loading MiDaS Model...")
        midas = torch.hub.load("intel-isl/MiDaS", midas_model, trust_repo=True)
        device = torch.device("cuda") if torch.cuda.is_available() and use_cpu == 'false' else torch.device("cpu")
        
        print('\033[34mWAS NS:\033[0m MiDaS is using device:', device)

        midas.to(device).eval()
        midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")

        if midas_model == "DPT_Large" or midas_model == "DPT_Hybrid":
            transform = midas_transforms.dpt_transform
        else:
            transform = midas_transforms.small_transform

        img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
        input_batch = transform(img).to(device)
        
        print('\033[34mWAS NS:\033[0m Approximating depth from image.')

        with torch.no_grad():
            prediction = midas(input_batch)
            prediction = torch.nn.functional.interpolate(
                prediction.unsqueeze(1),
                size=img.shape[:2],
                mode="bicubic",
                align_corners=False,
            ).squeeze()

        # Invert depth map
        if remove == 'foreground':
            depth = ( 255 - prediction.cpu().numpy().astype(np.uint8) )
            depth = depth.astype(np.float32)
        else:
            depth = prediction.cpu().numpy().astype(np.float32)
        depth = depth * 255 / (np.max(depth)) / 255
        depth = Image.fromarray(np.uint8(depth * 255))
        
        # Threshold depth mask
        if threshold == 'true':
            levels = self.AdjustLevels(threshold_low, threshold_mid, threshold_high)
            depth = levels.adjust(depth.convert('RGB')).convert('L')
        if smoothing > 0:
            depth = depth.filter(ImageFilter.GaussianBlur(radius=smoothing))
        depth = depth.resize(img_original.size).convert('L')
        
        # Validate background color arguments
        background_red = int(background_red) if isinstance(background_red, (int, float)) else 0
        background_green = int(background_green) if isinstance(background_green, (int, float)) else 0
        background_blue = int(background_blue) if isinstance(background_blue, (int, float)) else 0

        # Create background color tuple
        background_color = ( background_red, background_green, background_blue )
        
        # Create background image
        background = Image.new(mode="RGB", size=img_original.size, color=background_color)
        
        # Composite final image
        result_img = Image.composite(img_original, background, depth)

        del midas, device, midas_transforms
        del transform, img, img_original, input_batch, prediction
        
        return ( pil2tensor(result_img), pil2tensor(depth.convert('RGB')) )     
        
    class AdjustLevels:
        def __init__(self, min_level, mid_level, max_level):
            self.min_level = min_level
            self.mid_level = mid_level
            self.max_level = max_level

        def adjust(self, im):
            # load the image

            # convert the image to a numpy array
            im_arr = np.array(im)

            # apply the min level adjustment
            im_arr[im_arr < self.min_level] = self.min_level

            # apply the mid level adjustment
            im_arr = (im_arr - self.min_level) * (255 / (self.max_level - self.min_level))
            im_arr[im_arr < 0] = 0
            im_arr[im_arr > 255] = 255
            im_arr = im_arr.astype(np.uint8)

            # apply the max level adjustment
            im = Image.fromarray(im_arr)
            im = ImageOps.autocontrast(im, cutoff=self.max_level)

            return im
        
    def install_midas(self):
        global MIDAS_INSTALLED
        if 'timm' not in packages():
            print("\033[34mWAS NS:\033[0m Installing timm...")
            subprocess.check_call([sys.executable, '-m', 'pip', '-q', 'install', 'timm'])
        if 'opencv-python' not in packages():
            print("\033[34mWAS NS:\033[0m Installing CV2...")
            subprocess.check_call([sys.executable, '-m', 'pip', '-q', 'install', 'opencv-python'])
        MIDAS_INSTALLED = True


#! CONDITIONING NODES


# NSP CLIPTextEncode NODE

class WAS_NSP_CLIPTextEncoder:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": {
                            "noodle_key": ("STRING", {"default": '__', "multiline": False}),
                            "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                            "text": ("STRING", {"multiline": True}),
                            "clip": ("CLIP",),
                    }
                }
    
    OUTPUT_NODE = True
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "nsp_encode"

    CATEGORY = "WAS Suite/Conditioning"

    def nsp_encode(self, clip, text, noodle_key = '__', seed = 0):
    
        # Fetch the NSP Pantry
        local_pantry = os.getcwd()+'/ComfyUI/custom_nodes/nsp_pantry.json'
        if not os.path.exists(local_pantry):
            response = urlopen('https://raw.githubusercontent.com/WASasquatch/noodle-soup-prompts/main/nsp_pantry.json')
            tmp_pantry = json.loads(response.read())
            # Dump JSON locally
            pantry_serialized = json.dumps(tmp_pantry, indent=4)
            with open(local_pantry, "w") as f:
                f.write(pantry_serialized)
            del response, tmp_pantry
        
        # Load local pantry
        with open(local_pantry, 'r') as f:
            nspterminology = json.load(f)
            
        if seed > 0 or seed < 1:
            random.seed(seed)
            
        # Parse Text
        new_text = text
        for term in nspterminology:
            # Target Noodle
            tkey = f'{noodle_key}{term}{noodle_key}'
            # How many occurances?
            tcount = new_text.count(tkey)
            # Apply random results for each noodle counted
            for _ in range(tcount):
                new_text = new_text.replace(tkey, random.choice(nspterminology[term]), 1)
                seed = seed+1
                random.seed(seed)
                
        print('\033[34mWAS NS\033[0m CLIPTextEncode NSP:', new_text)
        
        return ([[clip.encode(new_text), {}]],{"ui":{"prompt":new_text}})


#! SAMPLING NODES

# KSAMPLER

class WAS_KSampler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "seed": ("SEED",),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }
                }

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "WAS Suite/Sampling"

    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return nodes.common_ksampler(model, seed['seed'], steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)

# SEED NODE
        
class WAS_Seed:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff})}
                }


    RETURN_TYPES = ("SEED",)
    FUNCTION = "seed"

    CATEGORY = "WAS Suite/Constant"

    def seed(self, seed):
        return ( {"seed": seed,}, )
    

#! TEXT NODES

# Text Multiline Node

class WAS_Text_Multiline:
    def __init__(s):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": { 
                        "text": ("STRING", {"default": '', "multiline": True}),
                    }
                }
    RETURN_TYPES = ("ASCII",)
    FUNCTION = "text_multiline"

    CATEGORY = "WAS Suite/Text"

    def text_multiline(self, text):
        return ( text, )
        
        
# Text String Node

class WAS_Text_String:
    def __init__(s):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": { 
                        "text": ("STRING", {"default": '', "multiline": False}),
                    }
                }
    RETURN_TYPES = ("ASCII",)
    FUNCTION = "text_string"

    CATEGORY = "WAS Suite/Text"

    def text_string(self, text):
        return ( text, )


# Text Random Line

class WAS_Text_Random_Line:
    def __init__(s):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": {
                        "text": ("ASCII",),
                        "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    }
                }
                
    RETURN_TYPES = ("ASCII",)
    FUNCTION = "text_random_line"

    CATEGORY = "WAS Suite/Text"

    def text_random_line(self, text, seed):
        lines = text.split("\n")
        random.seed(seed)
        choice = random.choice(lines)
        print('\033[34mWAS NS\033[0m Random Line:', choice)
        return ( choice, )


# Text Concatenate      
        
class WAS_Text_Concatenate:
    def __init__(s):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": {
                        "text_a": ("ASCII",),
                        "text_b": ("ASCII",),
                        "linebreak_addition": (['true','false'], ),
                    }
                }
                
    RETURN_TYPES = ("ASCII",)
    FUNCTION = "text_concatenate"

    CATEGORY = "WAS Suite/Text"

    def text_concatenate(self, text_a, text_b, linebreak_addition):
        return ( text_a + ("\n" if linebreak_addition == 'true' else '') + text_b, )
        

# Text Search and Replace  
        
class WAS_Search_and_Replace:
    def __init__(s):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": {
                        "text": ("ASCII",),
                        "find": ("STRING", {"default": '', "multiline": False}),
                        "replace": ("STRING", {"default": '', "multiline": False}),
                    }
                }
                
    RETURN_TYPES = ("ASCII",)
    FUNCTION = "text_search_and_replace"

    CATEGORY = "WAS Suite/Text"

    def text_search_and_replace(self, text, find, replace):
        return ( self.replace_substring(text, find, replace), )
        
    def replace_substring(self, text, find, replace):
        import re
        text = re.sub(find, replace, text)
        return text
        
        
# Text Parse NSP
        
class WAS_Text_Parse_NSP:
    def __init__(s):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": {
                            "noodle_key": ("STRING", {"default": '__', "multiline": False}),
                            "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                            "text": ("ASCII",),
                    }
                }
    
    OUTPUT_NODE = True
    RETURN_TYPES = ("ASCII",)
    FUNCTION = "text_parse_nsp"

    CATEGORY = "WAS Suite/Text"

    def text_parse_nsp(self, text, noodle_key = '__', seed = 0):
    
        # Fetch the NSP Pantry
        local_pantry = os.getcwd()+'/ComfyUI/custom_nodes/nsp_pantry.json'
        if not os.path.exists(local_pantry):
            response = urlopen('https://raw.githubusercontent.com/WASasquatch/noodle-soup-prompts/main/nsp_pantry.json')
            tmp_pantry = json.loads(response.read())
            # Dump JSON locally
            pantry_serialized = json.dumps(tmp_pantry, indent=4)
            with open(local_pantry, "w") as f:
                f.write(pantry_serialized)
            del response, tmp_pantry
        
        # Load local pantry
        with open(local_pantry, 'r') as f:
            nspterminology = json.load(f)
            
        if seed > 0 or seed < 1:
            random.seed(seed)
            
        # Parse Text
        new_text = text
        for term in nspterminology:
            # Target Noodle
            tkey = f'{noodle_key}{term}{noodle_key}'
            # How many occurances?
            tcount = new_text.count(tkey)
            # Apply random results for each noodle counted
            for _ in range(tcount):
                new_text = new_text.replace(tkey, random.choice(nspterminology[term]), 1)
                seed = seed+1
                random.seed(seed)
                
        print('\033[34mWAS NS\033[0m Text Parse NSP:', new_text)
        
        return ( new_text, )
        
        
# Text Search and Replace  
        
class WAS_Text_Save:
    def __init__(s):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": {
                        "text": ("ASCII",),
                        "path": ("STRING", {"default": '', "multiline": False}),
                        "filename": ("STRING", {"default": f'text_[time]', "multiline": False}),
                    }
                }
                
    OUTPUT_NODE = True
    RETURN_TYPES = ()
    FUNCTION = "save_text_file"

    CATEGORY = "WAS Suite/Text"

    def save_text_file(self, text, path, filename):
        
        # Ensure path exists
        if not os.path.exists(path):
            print(f'\033[34mWAS NS\033[0m Error: The path `{path}` doesn\'t exist!')
            
        # Ensure content to save
        if text.strip == '':
            print(f'\033[34mWAS NS\033[0m Error: There is no text specified to save! Text is empty.')
            
        # Replace tokens
        tokens = {
                    '[time]': f'{round(time.time())}',
                }
        for k in tokens.keys():
            text = self.replace_substring(text, k, tokens[k])
            
        # Write text file
        self.writeTextFile(os.path.join(path, filename + '.txt'), text)
        
        return( text, )
        
    # Save Text FileNotFoundError
    def writeTextFile(self, file, content):
        try:
            with open(file, 'w') as f:
                f.write(content)
        except OSError:
            print(f'\033[34mWAS Node Suite\033[0m Error: Unable to save file `{file}`')
            
            
    # Replace a substring
    def replace_substring(self, text, find, replace):
        import re
        text = re.sub(find, replace, text)
        return text

        
# Text to Conditioning

class WAS_Text_to_Conditioning:
    def __init__(s):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
                    "required": {
                        "clip": ("CLIP",),
                        "text": ("ASCII",),
                    }
                }
                
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "text_to_conditioning"

    CATEGORY = "WAS Suite/Text"

    def text_to_conditioning(self, clip, text):
        return ( [[clip.encode(text), {}]], )
        
        
# NODE MAPPING

NODE_CLASS_MAPPINGS = {
    # IMAGE
    "Image Filter Adjustments": WAS_Image_Filters,
    "Image Style Filter": WAS_Image_Style_Filter,
    "Image Blending Mode": WAS_Image_Blending_Mode,
    "Image Blend": WAS_Image_Blend,
    "Image Blend by Mask": WAS_Image_Blend_Mask,
    "Image Remove Color": WAS_Image_Remove_Color,
    "Image Threshold": WAS_Image_Threshold,
    "Image Chromatic Aberration": WAS_Image_Chromatic_Aberration,
    "Image Bloom Filter": WAS_Image_Bloom_Filter,
    "Image Blank": WAS_Image_Blank,
    "Image Film Grain": WAS_Film_Grain,
    "Image Flip": WAS_Image_Flip,
    "Image Rotate": WAS_Image_Rotate,
    "Image Nova Filter": WAS_Image_Nova_Filter,
    "Image Canny Filter": WAS_Canny_Filter,
    "Image Edge Detection Filter": WAS_Image_Edge,
    "Image fDOF Filter": WAS_Image_fDOF,
    "Image Median Filter": WAS_Image_Median_Filter,
    "Image Save": WAS_Image_Save,
    "Image Load": WAS_Load_Image,
    "Image Levels Adjustment": WAS_Image_Levels,
    "Image High Pass Filter": WAS_Image_High_Pass_Filter,
    "Tensor Batch to Image": WAS_Tensor_Batch_to_Image,
    "Image Select Color": WAS_Image_Select_Color,
    "Image Select Channel": WAS_Image_Select_Channel,
    "Image Mix RGB Channels": WAS_Image_RGB_Merge,
    # LATENT
    "Latent Upscale by Factor (WAS)": WAS_Latent_Upscale,
    "Latent Noise Injection": WAS_Latent_Noise,
    "Image to Latent Mask": WAS_Image_To_Mask,
    # MIDAS
    "MiDaS Depth Approximation": MiDaS_Depth_Approx,
    "MiDaS Mask Image": MiDaS_Background_Foreground_Removal,
    # CONDITIONING
    "CLIPTextEncode (NSP)": WAS_NSP_CLIPTextEncoder,
    # SAMPLING
    "KSampler (WAS)": WAS_KSampler,
    "Seed": WAS_Seed,
    # TEXT
    "Text Multiline": WAS_Text_Multiline,
    "Text String": WAS_Text_String,
    "Text Random Line": WAS_Text_Random_Line,
    "Text to Conditioning": WAS_Text_to_Conditioning,
    "Text Concatenate": WAS_Text_Concatenate,
    "Text Find and Replace": WAS_Search_and_Replace,
    "Text Parse Noodle Soup Prompts": WAS_Text_Parse_NSP,
    "Save Text File": WAS_Text_Save,
}

print('\033[34mWAS Node Suite: \033[92mLoaded\033[0m')