import json import os from pathlib import Path import datasets class WasteDumpsitesConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super().__init__(version=datasets.Version("1.0.0"), **kwargs) class WasteDumpsites(datasets.GeneratorBasedBuilder): """Waste Dumpsites Drone Imagery dataset in COCO format.""" BUILDER_CONFIGS = [ WasteDumpsitesConfig(name="default", description="Default config for Waste Dumpsites dataset") ] def _info(self): print("datasets.DatasetInfo") return datasets.DatasetInfo( features=datasets.Features({ "image": datasets.Image(), "image_id": datasets.Value("int64"), "width": datasets.Value("int64"), "height": datasets.Value("int64"), "annotations": datasets.Sequence({ "id": datasets.Value("int64"), "bbox": datasets.Sequence(datasets.Value("float32"), length=4), "area": datasets.Value("float32"), "category_id": datasets.Value("int64"), "category_name": datasets.Value("string"), "iscrowd": datasets.Value("int64"), }) }), supervised_keys=None, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" print("Returns SplitGenerators.") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"split": "train"} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"split": "valid"} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"split": "test"} ), ] def _generate_examples(self, split): """Yields examples for COCO format.""" print("Yields examples for COCO format.") # Using your exact directory and file structure split_dir = os.path.join(self.config.data_dir, split) annotations_file = os.path.join(split_dir, "annotations_coco.json") # Read COCO format annotations with open(annotations_file, 'r') as f: coco_data = json.load(f) # Create category id to name mapping categories = {cat['id']: cat['name'] for cat in coco_data['categories']} # Group annotations by image image_annotations = {} for ann in coco_data['annotations']: img_id = ann['image_id'] if img_id not in image_annotations: image_annotations[img_id] = [] image_annotations[img_id].append(ann) # Yield examples for image in coco_data['images']: image_id = image['id'] print(image_id) # Get all annotations for this image annotations = image_annotations.get(image_id, []) # Prepare annotations in the required format formatted_annotations = { "id": [], "bbox": [], "area": [], "category_id": [], "category_name": [], "iscrowd": [] } for ann in annotations: formatted_annotations["id"].append(ann["id"]) formatted_annotations["bbox"].append(ann["bbox"]) formatted_annotations["area"].append(ann["area"]) formatted_annotations["category_id"].append(ann["category_id"]) formatted_annotations["category_name"].append(categories[ann["category_id"]]) formatted_annotations["iscrowd"].append(ann.get("iscrowd", 0)) yield str(image_id), { "image": os.path.join(split_dir, image["file_name"]), "image_id": image_id, "width": image["width"], "height": image["height"], "annotations": formatted_annotations }