File size: 7,923 Bytes
b1c90d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e7b9d3
b1c90d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97a1365
 
 
 
b1c90d8
 
 
 
 
 
 
 
 
 
 
 
 
4e7b9d3
b1c90d8
 
 
 
 
 
 
 
4e7b9d3
 
 
b1c90d8
 
 
 
 
 
 
 
 
 
 
 
 
7d1652c
b1c90d8
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright 2020 The HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TextCaps loading script."""


import csv
import json
import os
from multiprocessing.sharedctypes import Value
from pathlib import Path

import datasets

_CITATION = """\
@article{sidorov2019textcaps,
    title={TextCaps: a Dataset for Image Captioningwith Reading Comprehension},
    author={Sidorov, Oleksii and Hu, Ronghang and Rohrbach, Marcus and Singh, Amanpreet},
    journal={arXiv preprint arXiv:2003.12462},
    year={2020}
}
"""

_DESCRIPTION = """\
extCaps requires models to read and reason about text in images to generate captions about them. Specifically, models need to incorporate a new modality of text present in the images and reason over it and visual content in the image to generate image descriptions.
Current state-of-the-art models fail to generate captions for images in TextCaps because they do not have text reading and reasoning capabilities. See the examples in the image to compare ground truth answers and corresponding predictions by a state-of-the-art model.
"""

_HOMEPAGE = "https://textvqa.org/textcaps/"

_LICENSE = "CC BY 4.0"  # TODO need to credit both ms coco and vqa authors!

_URLS = {
    "captions": {
        "train": "https://dl.fbaipublicfiles.com/textvqa/data/textcaps/TextCaps_0.1_train.json",
        "val": "https://dl.fbaipublicfiles.com/textvqa/data/textcaps/TextCaps_0.1_val.json",
        "test": "https://dl.fbaipublicfiles.com/textvqa/data/textcaps/TextCaps_0.1_test.json",
    },
    "images": {
        "train": "https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip",
        "val": "https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip",
        "test": "https://dl.fbaipublicfiles.com/textvqa/images/test_images.zip",
    },
    "ocr_tokens": {
        "train": "https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_Rosetta_OCR_v0.2_train.json",
        "val": "https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_Rosetta_OCR_v0.2_val.json",
        "test": "https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_Rosetta_OCR_v0.2_test.json",
    },
}

_SUB_FOLDER_OR_FILE_NAME = {
    "images": {
        "train": "train_images",
        "val": "train_images",
        "test": "test_images",
    },
}


class TextCapsDataset(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("1.0.0")

    # BUILDER_CONFIGS = [
    #     datasets.BuilderConfig(name="v2", version=VERSION, description="TODO later"),
    #     datasets.BuilderConfig(name="v1", version=VERSION, description="TODO later"),
    # ]

    def _info(self):
        features = datasets.Features(
            {
                "ocr_tokens": [datasets.Value("string")],
                "ocr_info": [
                    {
                        "word": datasets.Value("string"),
                        "bounding_box": {
                            "width": datasets.Value("float"),
                            "height": datasets.Value("float"),
                            "rotation": datasets.Value("float"),
                            "roll": datasets.Value("float"),
                            "pitch": datasets.Value("float"),
                            "yaw": datasets.Value("float"),
                            "top_left_x": datasets.Value("float"),
                            "top_left_y": datasets.Value("float"),
                        },
                    }
                ],
                "image": datasets.Image(),
                "image_id": datasets.Value("string"),
                "image_classes": [datasets.Value("string")],
                "flickr_original_url": datasets.Value("string"),
                "flickr_300k_url": datasets.Value("string"),
                "image_width": datasets.Value("int32"),
                "image_height": datasets.Value("int32"),
                "set_name": datasets.Value("string"),
                "image_name": datasets.Value("string"),
                "image_path": datasets.Value("string"),
                "reference_strs": [datasets.Value("string")],
                "reference_tokens": [[datasets.Value("string")]],
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # urls = _URLS[self.config.name] # TODO later
        data_dir = dl_manager.download_and_extract(_URLS)
        gen_kwargs = {
            split_name: {
                f"{dir_name}_path": Path(data_dir[dir_name][split_name])
                if split_name in data_dir[dir_name]
                else None
                for dir_name in _URLS.keys()
            }
            for split_name in ["train", "val", "test"]
        }

        for split_name in ["train", "val", "test"]:
            gen_kwargs[split_name]["split_name"] = split_name
            gen_kwargs[split_name]["images_path"] = (
                gen_kwargs[split_name]["images_path"]
                / _SUB_FOLDER_OR_FILE_NAME["images"][split_name]
            )
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs=gen_kwargs["train"],
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs=gen_kwargs["val"],
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs=gen_kwargs["test"],
            ),
        ]

    def _generate_examples(
        self, captions_path, ocr_tokens_path, images_path, split_name
    ):
        seen_image_ids = set()
        captions = json.load(open(captions_path, "r"))["data"]
        ocr_tokens = json.load(open(ocr_tokens_path, "r"))["data"]

        ocr_tokens_per_image_id = {}
        for ocr_item in ocr_tokens:
            ocr_tokens_per_image_id[ocr_item["image_id"]] = ocr_item

        for caption_item in captions:
            if caption_item["image_id"] in seen_image_ids:
                continue
            seen_image_ids.add(caption_item["image_id"])
            ocr_item = ocr_tokens_per_image_id[caption_item["image_id"]]
            record = {
                "ocr_tokens": ocr_item["ocr_tokens"],
                "ocr_info": ocr_item["ocr_info"],
                "image_id": caption_item["image_id"],
                "image_classes": caption_item["image_classes"],
                "flickr_original_url": caption_item["flickr_original_url"],
                "flickr_300k_url": caption_item["flickr_300k_url"],
                "image_width": caption_item["image_width"],
                "image_height": caption_item["image_height"],
                "set_name": caption_item["set_name"],
                "image_name": caption_item["image_name"],
                "image_path": caption_item["image_path"],
                "image" : str(images_path / f'{caption_item["image_name"]}.jpg')
            }
            if not split_name == "test":
                record["reference_strs"] = caption_item["reference_strs"]
                record["reference_tokens"] = caption_item["reference_tokens"]
            else:
                record["reference_strs"] = None
                record["reference_tokens"] = None
            yield caption_item["image_id"], record