Create food.py
Browse files
food.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Food dataset."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\none"""
|
26 |
+
|
27 |
+
_DESCRIPTION = """\
|
28 |
+
A simple food dataset for personal study use. Structure follows the CPPE-5 dataset.
|
29 |
+
"""
|
30 |
+
|
31 |
+
_HOMEPAGE = ""
|
32 |
+
|
33 |
+
_LICENSE = "Unknown"
|
34 |
+
|
35 |
+
_URL = "https://drive.google.com/uc?id=1fXfOU8EyGn0oiZFclM-fe8FoCigDL41l"
|
36 |
+
|
37 |
+
_CATEGORIES = ["Broccoli", "Tomato", "Potato"]
|
38 |
+
|
39 |
+
|
40 |
+
class Food(datasets.GeneratorBasedBuilder):
|
41 |
+
"""Food Dataset"""
|
42 |
+
|
43 |
+
VERSION = datasets.Version("1.0.0")
|
44 |
+
|
45 |
+
def _info(self):
|
46 |
+
features = datasets.Features(
|
47 |
+
{
|
48 |
+
"image_id": datasets.Value("int64"),
|
49 |
+
"image": datasets.Image(),
|
50 |
+
"width": datasets.Value("int32"),
|
51 |
+
"height": datasets.Value("int32"),
|
52 |
+
"objects": datasets.Sequence(
|
53 |
+
{
|
54 |
+
"id": datasets.Value("int64"),
|
55 |
+
"area": datasets.Value("int64"),
|
56 |
+
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
57 |
+
"category": datasets.ClassLabel(names=_CATEGORIES),
|
58 |
+
}
|
59 |
+
),
|
60 |
+
}
|
61 |
+
)
|
62 |
+
return datasets.DatasetInfo(
|
63 |
+
description=_DESCRIPTION,
|
64 |
+
features=features,
|
65 |
+
homepage=_HOMEPAGE,
|
66 |
+
license=_LICENSE,
|
67 |
+
citation=_CITATION,
|
68 |
+
)
|
69 |
+
|
70 |
+
def _split_generators(self, dl_manager):
|
71 |
+
archive = dl_manager.download(_URL)
|
72 |
+
return [
|
73 |
+
datasets.SplitGenerator(
|
74 |
+
name=datasets.Split.TRAIN,
|
75 |
+
gen_kwargs={
|
76 |
+
"annotation_file_path": "annotations/train.json",
|
77 |
+
"files": dl_manager.iter_archive(archive),
|
78 |
+
},
|
79 |
+
),
|
80 |
+
datasets.SplitGenerator(
|
81 |
+
name=datasets.Split.TEST,
|
82 |
+
gen_kwargs={
|
83 |
+
"annotation_file_path": "annotations/test.json",
|
84 |
+
"files": dl_manager.iter_archive(archive),
|
85 |
+
},
|
86 |
+
),
|
87 |
+
]
|
88 |
+
|
89 |
+
def _generate_examples(self, annotation_file_path, files):
|
90 |
+
def process_annot(annot, category_id_to_category):
|
91 |
+
return {
|
92 |
+
"id": annot["id"],
|
93 |
+
"area": annot["area"],
|
94 |
+
"bbox": annot["bbox"],
|
95 |
+
"category": category_id_to_category[annot["category_id"]],
|
96 |
+
}
|
97 |
+
|
98 |
+
image_id_to_image = {}
|
99 |
+
idx = 0
|
100 |
+
# This loop relies on the ordering of the files in the archive:
|
101 |
+
# Annotation files come first, then the images.
|
102 |
+
for path, f in files:
|
103 |
+
file_name = os.path.basename(path)
|
104 |
+
if path == annotation_file_path:
|
105 |
+
annotations = json.load(f)
|
106 |
+
category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
|
107 |
+
image_id_to_annotations = collections.defaultdict(list)
|
108 |
+
for annot in annotations["annotations"]:
|
109 |
+
image_id_to_annotations[annot["image_id"]].append(annot)
|
110 |
+
image_id_to_image = {annot["file_name"]: annot for annot in annotations["images"]}
|
111 |
+
elif file_name in image_id_to_image:
|
112 |
+
image = image_id_to_image[file_name]
|
113 |
+
objects = [
|
114 |
+
process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
|
115 |
+
]
|
116 |
+
yield idx, {
|
117 |
+
"image_id": image["id"],
|
118 |
+
"image": {"path": path, "bytes": f.read()},
|
119 |
+
"width": image["width"],
|
120 |
+
"height": image["height"],
|
121 |
+
"objects": objects,
|
122 |
+
}
|
123 |
+
idx += 1
|