Datasets:

Modalities:
Image
ArXiv:
OscarMolina commited on
Commit
2b2592c
·
verified ·
1 Parent(s): a276dfb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -80
README.md CHANGED
@@ -1,17 +1,28 @@
1
- ---
2
  task_categories:
3
- - image-classification
 
 
4
  language:
5
- - en
6
  tags:
7
- - image
8
- pretty_name: MAMe Dataset
9
- size_categories:
10
- - 10K<n<100K
 
 
 
 
 
 
 
 
11
  dataset_info:
12
  features:
13
  - name: image
14
- dtype: image
 
15
  - name: medium
16
  dtype:
17
  class_label:
@@ -51,6 +62,7 @@ dataset_info:
51
  dtype: string
52
  - name: subset
53
  dtype: string
 
54
  - name: width
55
  dtype: int32
56
  - name: height
@@ -58,75 +70,4 @@ dataset_info:
58
  - name: product_size
59
  dtype: int32
60
  - name: aspect_ratio
61
- dtype: float32
62
- ---
63
-
64
- ## MAMe Dataset: Museum Artworks Medium
65
-
66
- The MAMe Dataset is an image classification dataset focused on the recognition of mediums in artworks and heritage held by museums (e.g., Oil on canvas, Bronze or Woodcut).
67
-
68
- The classes considered in the MAMe dataset comprise a wide variety of mediums according to both interpretations of the term. These can range from simple material aspects (e.g., Bronze, Silver or Gold) to complex, high-level techniques (e.g., Faience, Woodblock or Woven fabric). The variety of relevant features in MAMe requires both attention to detail and to the overall image structure.
69
-
70
- ---
71
-
72
- ### Paper
73
-
74
- - Journal Version: [Materials in Art and Museum Environment (MAMe): A Dataset for Art Material Recognition](https://link.springer.com/article/10.1007/s10489-021-02951-w)
75
- - ArXiv Version: [MAMe: A Dataset for Multi-class Classification of Materials in Artworks](https://arxiv.org/pdf/2007.13693)
76
-
77
- ---
78
-
79
- ### Dataset Variants: TODO
80
-
81
- - **MAMe_small**: A toy version of the dataset, optimized for quick experimentation and lighter storage needs.
82
- - **MAMe_original**: The original version of the dataset, meant for detailed tasks requiring precision in material classification.
83
-
84
- ---
85
-
86
- ### Dataset Description
87
-
88
- The MAMe dataset contains thousands of artworks from three different museums, and proposes a classification task consisting on differentiating between 29 mediums (i.e. materials and techniques) supervised by art experts.
89
-
90
- - **Curated by**: HPAI
91
- - **License**: The MAMe dataset is available for non-commercial research purposes only.
92
-
93
- ### Citation
94
-
95
- If you use this dataset, please cite the following journal paper:
96
-
97
- ```bibtex
98
- @article{pares2022mame,
99
- title={The MAMe dataset: on the relevance of high resolution and variable shape image properties},
100
- author={Par{\'e}s, Ferran and Arias-Duart, Anna and Garcia-Gasulla, Dario and others},
101
- journal={Applied Intelligence},
102
- volume={52},
103
- number={12},
104
- pages={11703--11724},
105
- year={2022},
106
- publisher={Springer},
107
- doi={10.1007/s10489-021-02951-w}
108
- }
109
- ```
110
-
111
- For accessibility purposes, you can also reference the ArXiv version:
112
-
113
- ```bibtex
114
- @article{pares2020mame,
115
- title={The MAMe Dataset: On the relevance of High Resolution and Variable Shape image properties},
116
- author={Par{\'e}s, Ferran and Arias-Duart, Anna and Garcia-Gasulla, Dario and Campo-Franc{\'e}s, Gema and Viladrich, Nina and Labarta, Jes{\'u}s and Ayguad{\'e}, Eduard},
117
- journal={arXiv preprint arXiv:2007.13693},
118
- year={2020},
119
- url = {https://arxiv.org/pdf/2007.13693}
120
- }
121
- ```
122
-
123
- ---
124
-
125
- ### Dataset Card Authors
126
-
127
- [Ferran Parés]([email protected]), [Anna Arias-Duart]([email protected]), [Dario Garcia-Gasulla]([email protected])
128
-
129
-
130
- ### Dataset Card Contact
131
-
132
- For more information or questions about this dataset, please contact the [HPAI organization](https://hpai.bsc.es).
 
1
+ pretty_name: MAMe Dataset
2
  task_categories:
3
+ - image-classification
4
+ size_categories:
5
+ - 10K<n<100K
6
  language:
7
+ - en
8
  tags:
9
+ - image
10
+ - artwork
11
+ - museum
12
+ configs:
13
+ - config_name: mame_dataset
14
+ data_files:
15
+ - path: data/dataset.csv
16
+ description: "Main dataset file containing all splits (train, val, test)"
17
+ - path: data/images/small.zip
18
+ description: "ZIP file containing all image files"
19
+ - path: data/labels.csv
20
+ description: "File containing label mappings"
21
  dataset_info:
22
  features:
23
  - name: image
24
+ dtype: string
25
+ description: "Filename of the image (e.g., '1234.jpg'). The actual image file is located in data/images/small.zip"
26
  - name: medium
27
  dtype:
28
  class_label:
 
62
  dtype: string
63
  - name: subset
64
  dtype: string
65
+ description: "Indicates whether the sample belongs to 'train', 'val', or 'test' split"
66
  - name: width
67
  dtype: int32
68
  - name: height
 
70
  - name: product_size
71
  dtype: int32
72
  - name: aspect_ratio
73
+ dtype: float32