Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,883 Bytes
520b156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d364f0
520b156
 
d538e03
520b156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
license: mit
dataset_info:
  features:
  - name: query
    dtype: string
  - name: pos
    sequence: string
  - name: neg
    sequence: 'null'
  - name: relevance
    dtype: float64
  splits:
  - name: train
    num_bytes: 9647396601
    num_examples: 23670898
  download_size: 6255637479
  dataset_size: 9647396601
configs:
- config_name: default
  data_files:
  - split: train
    path: Amazon-Reviews-2023/train-*
---

*The finetuning dataset is is available at this link:[KaLM-Embedding/KaLM-embedding-finetuning-data](https://huggingface.co/datasets/KaLM-Embedding/KaLM-embedding-finetuning-data).*

## Citation
If you find these datasets useful, please consider giving a star and citation.
```
@misc{zhao2025kalmembeddingv2,
      title={KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model}, 
      author={Xinping Zhao and Xinshuo Hu and Zifei Shan and Shouzheng Huang and Yao Zhou and Xin Zhang and Zetian Sun and Zhenyu Liu and Dongfang Li and Xinyuan Wei and Youcheng Pan and Yang Xiang and Meishan Zhang and Haofen Wang and Jun Yu and Baotian Hu and Min Zhang},
      year={2025},
      eprint={2506.20923},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2506.20923}, 
}

@misc{hu2025kalmembedding,
      title={KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model}, 
      author={Xinshuo Hu and Zifei Shan and Xinping Zhao and Zetian Sun and Zhenyu Liu and Dongfang Li and Shaolin Ye and Xinyuan Wei and Qian Chen and Baotian Hu and Haofen Wang and Jun Yu and Min Zhang},
      year={2025},
      eprint={2501.01028},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2501.01028}, 
}
```


## Contact
If you encounter any issue, feel free to contact us via the email: <[email protected]>, <[email protected]>