GindaChen commited on
Commit
bf89569
·
verified ·
1 Parent(s): 367ec28

Upload folder using huggingface_hub

Browse files
Files changed (33) hide show
  1. attnserver.run_attnserver.slurm.sh.343196.out.log +333 -0
  2. attnserver.run_attnserver.slurm.sh.343205.err.log +2 -2
  3. attnserver.run_attnserver.slurm.sh.343205.out.log +710 -0
  4. attnserver.run_attnserver.slurm.sh.343207.err.log +0 -0
  5. attnserver.run_attnserver.slurm.sh.343207.out.log +1284 -0
  6. attnserver.run_attnserver.slurm.sh.343208.err.log +40 -0
  7. attnserver.run_attnserver.slurm.sh.343208.out.log +734 -0
  8. attnserver.run_attnserver.slurm.sh.343209.err.log +315 -0
  9. attnserver.run_attnserver.slurm.sh.343209.out.log +654 -0
  10. attnserver.run_attnserver.slurm.sh.343211.err.log +315 -0
  11. attnserver.run_attnserver.slurm.sh.343211.out.log +654 -0
  12. attnserver.run_attnserver.slurm.sh.343213.out.log +0 -0
  13. attnserver.run_attnserver.slurm.sh.343214.err.log +639 -0
  14. attnserver.run_attnserver.slurm.sh.343214.out.log +0 -0
  15. attnserver.run_attnserver.slurm.sh.343219.err.log +55 -0
  16. attnserver.run_attnserver.slurm.sh.343219.out.log +0 -0
  17. attnserver.run_attnserver.slurm.sh.343220.out.log +1165 -0
  18. attnserver.run_attnserver.slurm.sh.343221.err.log +665 -0
  19. attnserver.run_attnserver.slurm.sh.343221.out.log +753 -0
  20. attnserver.run_attnserver.slurm.sh.343222.err.log +0 -0
  21. attnserver.run_attnserver.slurm.sh.343222.out.log +0 -0
  22. attnserver.run_attnserver.slurm.sh.343223.err.log +192 -0
  23. attnserver.run_attnserver.slurm.sh.343223.out.log +1553 -0
  24. attnserver.run_attnserver.slurm.sh.343224.err.log +156 -0
  25. attnserver.run_attnserver.slurm.sh.343224.out.log +19 -0
  26. attnserver.run_attnserver.slurm.sh.343225.err.log +79 -0
  27. attnserver.run_attnserver.slurm.sh.343225.out.log +0 -0
  28. attnserver.run_attnserver.slurm.sh.343226.err.log +92 -0
  29. attnserver.run_attnserver.slurm.sh.343226.out.log +0 -0
  30. attnserver.run_attnserver.slurm.sh.343227.err.log +141 -0
  31. attnserver.run_attnserver.slurm.sh.343227.out.log +10 -0
  32. attnserver.run_attnserver.slurm.sh.343228.err.log +149 -0
  33. attnserver.run_attnserver.slurm.sh.343228.out.log +536 -0
attnserver.run_attnserver.slurm.sh.343196.out.log CHANGED
@@ -55261,3 +55261,336 @@ batch tensor after cp: labels torch.Size([2, 32768])
55261
  batch tensor after cp: loss_mask torch.Size([2, 32768])
55262
  batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55263
  batch tensor after cp: position_ids torch.Size([2, 32768])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55261
  batch tensor after cp: loss_mask torch.Size([2, 32768])
55262
  batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55263
  batch tensor after cp: position_ids torch.Size([2, 32768])
55264
+ batch tensor: tokens torch.Size([2, 131072])
55265
+ batch tensor: labels torch.Size([2, 131072])
55266
+ batch tensor: loss_mask torch.Size([2, 131072])
55267
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55268
+ batch tensor: position_ids torch.Size([2, 131072])
55269
+ batch tensor after cp: tokens torch.Size([2, 32768])
55270
+ batch tensor after cp: labels torch.Size([2, 32768])
55271
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55272
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55273
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55274
+ batch tensor: tokens torch.Size([2, 131072])
55275
+ batch tensor: labels torch.Size([2, 131072])
55276
+ batch tensor: loss_mask torch.Size([2, 131072])
55277
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55278
+ batch tensor: position_ids torch.Size([2, 131072])
55279
+ batch tensor after cp: tokens torch.Size([2, 32768])
55280
+ batch tensor after cp: labels torch.Size([2, 32768])
55281
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55282
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55283
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55284
+ Start exporting trace 2
55285
+ Done exporting trace 2
55286
+ [2025-06-21 21:34:06] iteration 3/ 10 | consumed samples: 3 | elapsed time per iteration (ms): 64811.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 1073741824.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
55287
+ batch tensor: tokens torch.Size([2, 131072])
55288
+ batch tensor: labels torch.Size([2, 131072])
55289
+ batch tensor: loss_mask torch.Size([2, 131072])
55290
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55291
+ batch tensor: position_ids torch.Size([2, 131072])
55292
+ batch tensor after cp: tokens torch.Size([2, 32768])
55293
+ batch tensor after cp: labels torch.Size([2, 32768])
55294
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55295
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55296
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55297
+ batch tensor: tokens torch.Size([2, 131072])
55298
+ batch tensor: labels torch.Size([2, 131072])
55299
+ batch tensor: loss_mask torch.Size([2, 131072])
55300
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55301
+ batch tensor: position_ids torch.Size([2, 131072])
55302
+ batch tensor after cp: tokens torch.Size([2, 32768])
55303
+ batch tensor after cp: labels torch.Size([2, 32768])
55304
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55305
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55306
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55307
+ batch tensor: tokens torch.Size([2, 131072])
55308
+ batch tensor: labels torch.Size([2, 131072])
55309
+ batch tensor: loss_mask torch.Size([2, 131072])
55310
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55311
+ batch tensor: position_ids torch.Size([2, 131072])
55312
+ batch tensor after cp: tokens torch.Size([2, 32768])
55313
+ batch tensor after cp: labels torch.Size([2, 32768])
55314
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55315
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55316
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55317
+ batch tensor: tokens torch.Size([2, 131072])
55318
+ batch tensor: labels torch.Size([2, 131072])
55319
+ batch tensor: loss_mask torch.Size([2, 131072])
55320
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55321
+ batch tensor: position_ids torch.Size([2, 131072])
55322
+ batch tensor after cp: tokens torch.Size([2, 32768])
55323
+ batch tensor after cp: labels torch.Size([2, 32768])
55324
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55325
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55326
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55327
+ batch tensor: tokens torch.Size([2, 131072])
55328
+ batch tensor: labels torch.Size([2, 131072])
55329
+ batch tensor: loss_mask torch.Size([2, 131072])
55330
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55331
+ batch tensor: position_ids torch.Size([2, 131072])
55332
+ batch tensor after cp: tokens torch.Size([2, 32768])
55333
+ batch tensor after cp: labels torch.Size([2, 32768])
55334
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55335
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55336
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55337
+ batch tensor: tokens torch.Size([2, 131072])
55338
+ batch tensor: labels torch.Size([2, 131072])
55339
+ batch tensor: loss_mask torch.Size([2, 131072])
55340
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55341
+ batch tensor: position_ids torch.Size([2, 131072])
55342
+ batch tensor after cp: tokens torch.Size([2, 32768])
55343
+ batch tensor after cp: labels torch.Size([2, 32768])
55344
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55345
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55346
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55347
+ batch tensor: tokens torch.Size([2, 131072])
55348
+ batch tensor: labels torch.Size([2, 131072])
55349
+ batch tensor: loss_mask torch.Size([2, 131072])
55350
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55351
+ batch tensor: position_ids torch.Size([2, 131072])
55352
+ batch tensor after cp: tokens torch.Size([2, 32768])
55353
+ batch tensor after cp: labels torch.Size([2, 32768])
55354
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55355
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55356
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55357
+ batch tensor: tokens torch.Size([2, 131072])
55358
+ batch tensor: labels torch.Size([2, 131072])
55359
+ batch tensor: loss_mask torch.Size([2, 131072])
55360
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55361
+ batch tensor: position_ids torch.Size([2, 131072])
55362
+ batch tensor after cp: tokens torch.Size([2, 32768])
55363
+ batch tensor after cp: labels torch.Size([2, 32768])
55364
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55365
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55366
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55367
+ batch tensor: tokens torch.Size([2, 131072])
55368
+ batch tensor: labels torch.Size([2, 131072])
55369
+ batch tensor: loss_mask torch.Size([2, 131072])
55370
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55371
+ batch tensor: position_ids torch.Size([2, 131072])
55372
+ batch tensor after cp: tokens torch.Size([2, 32768])
55373
+ batch tensor after cp: labels torch.Size([2, 32768])
55374
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55375
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55376
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55377
+ batch tensor: tokens torch.Size([2, 131072])
55378
+ batch tensor: labels torch.Size([2, 131072])
55379
+ batch tensor: loss_mask torch.Size([2, 131072])
55380
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55381
+ batch tensor: position_ids torch.Size([2, 131072])
55382
+ batch tensor after cp: tokens torch.Size([2, 32768])
55383
+ batch tensor after cp: labels torch.Size([2, 32768])
55384
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55385
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55386
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55387
+ batch tensor: tokens torch.Size([2, 131072])
55388
+ batch tensor: labels torch.Size([2, 131072])
55389
+ batch tensor: loss_mask torch.Size([2, 131072])
55390
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55391
+ batch tensor: position_ids torch.Size([2, 131072])
55392
+ batch tensor after cp: tokens torch.Size([2, 32768])
55393
+ batch tensor after cp: labels torch.Size([2, 32768])
55394
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55395
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55396
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55397
+ batch tensor: tokens torch.Size([2, 131072])
55398
+ batch tensor: labels torch.Size([2, 131072])
55399
+ batch tensor: loss_mask torch.Size([2, 131072])
55400
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55401
+ batch tensor: position_ids torch.Size([2, 131072])
55402
+ batch tensor after cp: tokens torch.Size([2, 32768])
55403
+ batch tensor after cp: labels torch.Size([2, 32768])
55404
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55405
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55406
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55407
+ batch tensor: tokens torch.Size([2, 131072])
55408
+ batch tensor: labels torch.Size([2, 131072])
55409
+ batch tensor: loss_mask torch.Size([2, 131072])
55410
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55411
+ batch tensor: position_ids torch.Size([2, 131072])
55412
+ batch tensor after cp: tokens torch.Size([2, 32768])
55413
+ batch tensor after cp: labels torch.Size([2, 32768])
55414
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55415
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55416
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55417
+ batch tensor: tokens torch.Size([2, 131072])
55418
+ batch tensor: labels torch.Size([2, 131072])
55419
+ batch tensor: loss_mask torch.Size([2, 131072])
55420
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55421
+ batch tensor: position_ids torch.Size([2, 131072])
55422
+ batch tensor: tokens torch.Size([2, 131072])
55423
+ batch tensor after cp: tokens torch.Size([2, 32768])
55424
+ batch tensor after cp: labels torch.Size([2, 32768])
55425
+ batch tensor: labels torch.Size([2, 131072])
55426
+ batch tensor: loss_mask torch.Size([2, 131072])
55427
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55428
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55429
+ batch tensor: position_ids torch.Size([2, 131072])
55430
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55431
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55432
+ batch tensor after cp: tokens torch.Size([2, 32768])
55433
+ batch tensor after cp: labels torch.Size([2, 32768])
55434
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55435
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55436
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55437
+ batch tensor: tokens torch.Size([2, 131072])
55438
+ batch tensor: labels torch.Size([2, 131072])
55439
+ batch tensor: loss_mask torch.Size([2, 131072])
55440
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55441
+ batch tensor: position_ids torch.Size([2, 131072])
55442
+ batch tensor after cp: tokens torch.Size([2, 32768])
55443
+ batch tensor after cp: labels torch.Size([2, 32768])
55444
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55445
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55446
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55447
+ batch tensor: tokens torch.Size([2, 131072])
55448
+ batch tensor: labels torch.Size([2, 131072])
55449
+ batch tensor: loss_mask torch.Size([2, 131072])
55450
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55451
+ batch tensor: position_ids torch.Size([2, 131072])
55452
+ batch tensor after cp: tokens torch.Size([2, 32768])
55453
+ batch tensor after cp: labels torch.Size([2, 32768])
55454
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55455
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55456
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55457
+ batch tensor: tokens torch.Size([2, 131072])
55458
+ batch tensor: labels torch.Size([2, 131072])
55459
+ batch tensor: loss_mask torch.Size([2, 131072])
55460
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55461
+ batch tensor: position_ids torch.Size([2, 131072])
55462
+ batch tensor after cp: tokens torch.Size([2, 32768])
55463
+ batch tensor after cp: labels torch.Size([2, 32768])
55464
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55465
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55466
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55467
+ batch tensor: tokens torch.Size([2, 131072])
55468
+ batch tensor: labels torch.Size([2, 131072])
55469
+ batch tensor: loss_mask torch.Size([2, 131072])
55470
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55471
+ batch tensor: position_ids torch.Size([2, 131072])
55472
+ batch tensor after cp: tokens torch.Size([2, 32768])
55473
+ batch tensor after cp: labels torch.Size([2, 32768])
55474
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55475
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55476
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55477
+ batch tensor: tokens torch.Size([2, 131072])
55478
+ batch tensor: labels torch.Size([2, 131072])
55479
+ batch tensor: loss_mask torch.Size([2, 131072])
55480
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55481
+ batch tensor: position_ids torch.Size([2, 131072])
55482
+ batch tensor after cp: tokens torch.Size([2, 32768])
55483
+ batch tensor after cp: labels torch.Size([2, 32768])
55484
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55485
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55486
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55487
+ batch tensor: tokens torch.Size([2, 131072])
55488
+ batch tensor: labels torch.Size([2, 131072])
55489
+ batch tensor: loss_mask torch.Size([2, 131072])
55490
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55491
+ batch tensor: position_ids torch.Size([2, 131072])
55492
+ batch tensor after cp: tokens torch.Size([2, 32768])
55493
+ batch tensor after cp: labels torch.Size([2, 32768])
55494
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55495
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55496
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55497
+ batch tensor: tokens torch.Size([2, 131072])
55498
+ batch tensor: labels torch.Size([2, 131072])
55499
+ batch tensor: loss_mask torch.Size([2, 131072])
55500
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55501
+ batch tensor: position_ids torch.Size([2, 131072])
55502
+ batch tensor after cp: tokens torch.Size([2, 32768])
55503
+ batch tensor after cp: labels torch.Size([2, 32768])
55504
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55505
+ batch tensor: tokens torch.Size([2, 131072])
55506
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55507
+ batch tensor: labels torch.Size([2, 131072])
55508
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55509
+ batch tensor: loss_mask torch.Size([2, 131072])
55510
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55511
+ batch tensor: position_ids torch.Size([2, 131072])
55512
+ batch tensor after cp: tokens torch.Size([2, 32768])
55513
+ batch tensor after cp: labels torch.Size([2, 32768])
55514
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55515
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55516
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55517
+ batch tensor: tokens torch.Size([2, 131072])
55518
+ batch tensor: labels torch.Size([2, 131072])
55519
+ batch tensor: loss_mask torch.Size([2, 131072])
55520
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55521
+ batch tensor: position_ids torch.Size([2, 131072])
55522
+ batch tensor after cp: tokens torch.Size([2, 32768])
55523
+ batch tensor after cp: labels torch.Size([2, 32768])
55524
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55525
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55526
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55527
+ batch tensor: tokens torch.Size([2, 131072])
55528
+ batch tensor: labels torch.Size([2, 131072])
55529
+ batch tensor: loss_mask torch.Size([2, 131072])
55530
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55531
+ batch tensor: position_ids torch.Size([2, 131072])
55532
+ batch tensor after cp: tokens torch.Size([2, 32768])
55533
+ batch tensor after cp: labels torch.Size([2, 32768])
55534
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55535
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55536
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55537
+ batch tensor: tokens torch.Size([2, 131072])
55538
+ batch tensor: labels torch.Size([2, 131072])
55539
+ batch tensor: loss_mask torch.Size([2, 131072])
55540
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55541
+ batch tensor: position_ids torch.Size([2, 131072])
55542
+ batch tensor after cp: tokens torch.Size([2, 32768])
55543
+ batch tensor after cp: labels torch.Size([2, 32768])
55544
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55545
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55546
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55547
+ batch tensor: tokens torch.Size([2, 131072])
55548
+ batch tensor: labels torch.Size([2, 131072])
55549
+ batch tensor: loss_mask torch.Size([2, 131072])
55550
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55551
+ batch tensor: position_ids torch.Size([2, 131072])
55552
+ batch tensor after cp: tokens torch.Size([2, 32768])
55553
+ batch tensor after cp: labels torch.Size([2, 32768])
55554
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55555
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55556
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55557
+ batch tensor: tokens torch.Size([2, 131072])
55558
+ batch tensor: labels torch.Size([2, 131072])
55559
+ batch tensor: loss_mask torch.Size([2, 131072])
55560
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55561
+ batch tensor: position_ids torch.Size([2, 131072])
55562
+ batch tensor after cp: tokens torch.Size([2, 32768])
55563
+ batch tensor after cp: labels torch.Size([2, 32768])
55564
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55565
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55566
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55567
+ batch tensor: tokens torch.Size([2, 131072])
55568
+ batch tensor: labels torch.Size([2, 131072])
55569
+ batch tensor: loss_mask torch.Size([2, 131072])
55570
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55571
+ batch tensor: position_ids torch.Size([2, 131072])
55572
+ batch tensor after cp: tokens torch.Size([2, 32768])
55573
+ batch tensor after cp: labels torch.Size([2, 32768])
55574
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55575
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55576
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55577
+ batch tensor: tokens torch.Size([2, 131072])
55578
+ batch tensor: labels torch.Size([2, 131072])
55579
+ batch tensor: loss_mask torch.Size([2, 131072])
55580
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55581
+ batch tensor: position_ids torch.Size([2, 131072])
55582
+ batch tensor after cp: tokens torch.Size([2, 32768])
55583
+ batch tensor after cp: labels torch.Size([2, 32768])
55584
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55585
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55586
+ batch tensor after cp: position_ids torch.Size([2, 32768])
55587
+ batch tensor: tokens torch.Size([2, 131072])
55588
+ batch tensor: labels torch.Size([2, 131072])
55589
+ batch tensor: loss_mask torch.Size([2, 131072])
55590
+ batch tensor: attention_mask torch.Size([2, 1, 131072, 131072])
55591
+ batch tensor: position_ids torch.Size([2, 131072])
55592
+ batch tensor after cp: tokens torch.Size([2, 32768])
55593
+ batch tensor after cp: labels torch.Size([2, 32768])
55594
+ batch tensor after cp: loss_mask torch.Size([2, 32768])
55595
+ batch tensor after cp: attention_mask torch.Size([2, 1, 32768, 131072])
55596
+ batch tensor after cp: position_ids torch.Size([2, 32768])
attnserver.run_attnserver.slurm.sh.343205.err.log CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:72b09a6203df8b2650f6bc27a68d69823fd06c0ca34d57c3a4bc566452d58678
3
- size 12348188
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:988d900d5b3fae56a38d44aac5fe7e7ac3dae66ea02debff6ebd701ff95eb243
3
+ size 12422535
attnserver.run_attnserver.slurm.sh.343205.out.log CHANGED
@@ -13123,3 +13123,713 @@ CHECKPOINT_PATH: gpt-checkpoint
13123
  PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
13124
  --------------------------------
13125
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13123
  PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
13124
  --------------------------------
13125
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
13126
+ INFO:megatron.training.initialize:Setting logging level to 0
13127
+ WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written.
13128
+ WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it
13129
+ INFO:megatron.training.initialize:Setting logging level to 0
13130
+ INFO:megatron.training.initialize:Setting logging level to 0
13131
+ INFO:megatron.training.initialize:Setting logging level to 0
13132
+ INFO:megatron.training.initialize:Setting logging level to 0
13133
+ INFO:megatron.training.initialize:Setting logging level to 0
13134
+ INFO:megatron.training.initialize:Setting logging level to 0
13135
+ INFO:megatron.training.initialize:Setting logging level to 0
13136
+ INFO:megatron.training.initialize:Setting logging level to 0
13137
+ using world size: 16, data-parallel size: 1, context-parallel size: 2, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 8, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0
13138
+ Number of virtual stages per pipeline stage: None
13139
+ WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used
13140
+ using torch.float16 for parameters ...
13141
+ ------------------------ arguments ------------------------
13142
+ account_for_embedding_in_pipeline_split ......... False
13143
+ account_for_loss_in_pipeline_split .............. False
13144
+ accumulate_allreduce_grads_in_fp32 .............. False
13145
+ adam_beta1 ...................................... 0.9
13146
+ adam_beta2 ...................................... 0.999
13147
+ adam_eps ........................................ 1e-08
13148
+ add_bias_linear ................................. True
13149
+ add_position_embedding .......................... True
13150
+ add_qkv_bias .................................... True
13151
+ adlr_autoresume ................................. False
13152
+ adlr_autoresume_interval ........................ 1000
13153
+ align_grad_reduce ............................... True
13154
+ align_param_gather .............................. False
13155
+ app_tag_run_name ................................ None
13156
+ app_tag_run_version ............................. 0.0.0
13157
+ apply_layernorm_1p .............................. False
13158
+ apply_query_key_layer_scaling ................... False
13159
+ apply_residual_connection_post_layernorm ........ False
13160
+ apply_rope_fusion ............................... False
13161
+ async_save ...................................... None
13162
+ async_tensor_model_parallel_allreduce ........... True
13163
+ attention_backend ............................... AttnBackend.auto
13164
+ attention_dropout ............................... 0.1
13165
+ attention_softmax_in_fp32 ....................... False
13166
+ auto_detect_ckpt_format ......................... False
13167
+ barrier_with_L1_time ............................ True
13168
+ bert_binary_head ................................ True
13169
+ bert_embedder_type .............................. megatron
13170
+ bert_load ....................................... None
13171
+ bf16 ............................................ False
13172
+ bias_dropout_fusion ............................. True
13173
+ bias_gelu_fusion ................................ True
13174
+ bias_swiglu_fusion .............................. True
13175
+ biencoder_projection_dim ........................ 0
13176
+ biencoder_shared_query_context_model ............ False
13177
+ block_data_path ................................. None
13178
+ calc_ft_timeouts ................................ False
13179
+ calculate_per_token_loss ........................ False
13180
+ check_for_large_grads ........................... False
13181
+ check_for_nan_in_loss_and_grad .................. False
13182
+ check_for_spiky_loss ............................ False
13183
+ check_weight_hash_across_dp_replicas_interval ... None
13184
+ ckpt_assume_constant_structure .................. False
13185
+ ckpt_convert_format ............................. None
13186
+ ckpt_convert_save ............................... None
13187
+ ckpt_convert_update_legacy_dist_opt_format ...... False
13188
+ ckpt_format ..................................... torch_dist
13189
+ ckpt_fully_parallel_load ........................ False
13190
+ ckpt_fully_parallel_save ........................ True
13191
+ ckpt_fully_parallel_save_deprecated ............. False
13192
+ ckpt_step ....................................... None
13193
+ classes_fraction ................................ 1.0
13194
+ clip_grad ....................................... 1.0
13195
+ clone_scatter_output_in_embedding ............... True
13196
+ config_logger_dir ...............................
13197
+ consumed_train_samples .......................... 0
13198
+ consumed_valid_samples .......................... 0
13199
+ context_parallel_size ........................... 2
13200
+ cp_comm_type .................................... ['p2p']
13201
+ create_attention_mask_in_dataloader ............. True
13202
+ cross_entropy_fusion_impl ....................... native
13203
+ cross_entropy_loss_fusion ....................... False
13204
+ cuda_graph_scope ................................ full
13205
+ cuda_graph_warmup_steps ......................... 3
13206
+ data_args_path .................................. None
13207
+ data_cache_path ................................. None
13208
+ data_parallel_random_init ....................... False
13209
+ data_parallel_sharding_strategy ................. no_shard
13210
+ data_parallel_size .............................. 1
13211
+ data_path ....................................... None
13212
+ data_per_class_fraction ......................... 1.0
13213
+ data_sharding ................................... True
13214
+ dataloader_type ................................. single
13215
+ ddp_average_in_collective ....................... False
13216
+ ddp_bucket_size ................................. None
13217
+ ddp_num_buckets ................................. None
13218
+ ddp_pad_buckets_for_high_nccl_busbw ............. False
13219
+ decoder_first_pipeline_num_layers ............... None
13220
+ decoder_last_pipeline_num_layers ................ None
13221
+ decoder_num_layers .............................. None
13222
+ decoder_seq_length .............................. None
13223
+ decoupled_lr .................................... None
13224
+ decoupled_min_lr ................................ None
13225
+ decrease_batch_size_if_needed ................... False
13226
+ defer_embedding_wgrad_compute ................... False
13227
+ deprecated_use_mcore_models ..................... False
13228
+ deterministic_mode .............................. False
13229
+ dino_bottleneck_size ............................ 256
13230
+ dino_freeze_last_layer .......................... 1
13231
+ dino_head_hidden_size ........................... 2048
13232
+ dino_local_crops_number ......................... 10
13233
+ dino_local_img_size ............................. 96
13234
+ dino_norm_last_layer ............................ False
13235
+ dino_teacher_temp ............................... 0.07
13236
+ dino_warmup_teacher_temp ........................ 0.04
13237
+ dino_warmup_teacher_temp_epochs ................. 30
13238
+ disable_bf16_reduced_precision_matmul ........... False
13239
+ disable_mamba_mem_eff_path ...................... False
13240
+ disable_straggler_on_startup .................... False
13241
+ dist_ckpt_format_deprecated ..................... None
13242
+ dist_ckpt_strictness ............................ assume_ok_unexpected
13243
+ distribute_saved_activations .................... False
13244
+ distributed_backend ............................. nccl
13245
+ distributed_timeout_minutes ..................... 10
13246
+ embedding_path .................................. None
13247
+ empty_unused_memory_level ....................... 0
13248
+ enable_cuda_graph ............................... False
13249
+ enable_ft_package ............................... False
13250
+ enable_gloo_process_groups ...................... True
13251
+ enable_msc ...................................... True
13252
+ enable_one_logger ............................... True
13253
+ encoder_num_layers .............................. 2
13254
+ encoder_pipeline_model_parallel_size ............ 0
13255
+ encoder_seq_length .............................. 131072
13256
+ encoder_tensor_model_parallel_size .............. 0
13257
+ end_weight_decay ................................ 0.1
13258
+ eod_mask_loss ................................... False
13259
+ error_injection_rate ............................ 0
13260
+ error_injection_type ............................ transient_error
13261
+ eval_interval ................................... 16
13262
+ eval_iters ...................................... 1
13263
+ evidence_data_path .............................. None
13264
+ exit_duration_in_mins ........................... None
13265
+ exit_interval ................................... None
13266
+ exit_on_missing_checkpoint ...................... False
13267
+ exit_signal_handler ............................. False
13268
+ exp_avg_dtype ................................... torch.float32
13269
+ exp_avg_sq_dtype ................................ torch.float32
13270
+ expert_model_parallel_size ...................... 1
13271
+ expert_tensor_parallel_size ..................... 8
13272
+ external_cuda_graph ............................. False
13273
+ ffn_hidden_size ................................. 16384
13274
+ finetune ........................................ False
13275
+ first_last_layers_bf16 .......................... False
13276
+ flash_decode .................................... False
13277
+ fp16 ............................................ True
13278
+ fp16_lm_cross_entropy ........................... False
13279
+ fp32_residual_connection ........................ False
13280
+ fp8 ............................................. None
13281
+ fp8_amax_compute_algo ........................... most_recent
13282
+ fp8_amax_history_len ............................ 1
13283
+ fp8_interval .................................... 1
13284
+ fp8_margin ...................................... 0
13285
+ fp8_param_gather ................................ False
13286
+ fp8_recipe ...................................... delayed
13287
+ fp8_wgrad ....................................... True
13288
+ fsdp_double_buffer .............................. False
13289
+ global_batch_size ............................... 1
13290
+ grad_reduce_in_bf16 ............................. False
13291
+ gradient_accumulation_fusion .................... True
13292
+ gradient_reduce_div_fusion ...................... True
13293
+ group_query_attention ........................... True
13294
+ head_lr_mult .................................... 1.0
13295
+ heterogeneous_layers_config_encoded_json ........ None
13296
+ heterogeneous_layers_config_path ................ None
13297
+ hidden_dropout .................................. 0.1
13298
+ hidden_size ..................................... 4096
13299
+ hierarchical_context_parallel_sizes ............. None
13300
+ high_priority_stream_groups ..................... []
13301
+ hybrid_attention_ratio .......................... 0.0
13302
+ hybrid_mlp_ratio ................................ 0.0
13303
+ hybrid_override_pattern ......................... None
13304
+ hysteresis ...................................... 2
13305
+ ict_head_size ................................... None
13306
+ ict_load ........................................ None
13307
+ img_h ........................................... 224
13308
+ img_w ........................................... 224
13309
+ indexer_batch_size .............................. 128
13310
+ indexer_log_interval ............................ 1000
13311
+ inference_batch_times_seqlen_threshold .......... -1
13312
+ inference_dynamic_batching ...................... False
13313
+ inference_dynamic_batching_buffer_guaranteed_fraction 0.2
13314
+ inference_dynamic_batching_buffer_overflow_factor None
13315
+ inference_dynamic_batching_buffer_size_gb ....... 40.0
13316
+ inference_dynamic_batching_chunk_size ........... 256
13317
+ inference_dynamic_batching_max_requests_override None
13318
+ inference_dynamic_batching_max_tokens_override .. None
13319
+ inference_max_batch_size ........................ 8
13320
+ inference_max_seq_length ........................ 2560
13321
+ inference_rng_tracker ........................... False
13322
+ init_method_std ................................. 0.02
13323
+ init_method_xavier_uniform ...................... False
13324
+ init_model_with_meta_device ..................... False
13325
+ initial_loss_scale .............................. 4294967296
13326
+ inprocess_active_world_size ..................... 16
13327
+ inprocess_barrier_timeout ....................... 120
13328
+ inprocess_completion_timeout .................... 120
13329
+ inprocess_empty_cuda_cache ...................... False
13330
+ inprocess_granularity ........................... node
13331
+ inprocess_hard_timeout .......................... 90
13332
+ inprocess_heartbeat_interval .................... 30
13333
+ inprocess_heartbeat_timeout ..................... 60
13334
+ inprocess_last_call_wait ........................ 1
13335
+ inprocess_max_iterations ........................ None
13336
+ inprocess_monitor_process_interval .............. 1.0
13337
+ inprocess_monitor_thread_interval ............... 1.0
13338
+ inprocess_progress_watchdog_interval ............ 1.0
13339
+ inprocess_restart ............................... False
13340
+ inprocess_soft_timeout .......................... 60
13341
+ inprocess_termination_grace_time ................ 1
13342
+ is_hybrid_model ................................. False
13343
+ iter_per_epoch .................................. 1250
13344
+ iterations_to_skip .............................. []
13345
+ keep_fp8_transpose_cache_when_using_custom_fsdp . False
13346
+ kv_channels ..................................... 64
13347
+ kv_lora_rank .................................... 32
13348
+ lazy_mpu_init ................................... None
13349
+ load ............................................ gpt-checkpoint
13350
+ load_model_opt_format ........................... False
13351
+ local_rank ...................................... 0
13352
+ log_interval .................................... 1
13353
+ log_loss_scale_to_tensorboard ................... True
13354
+ log_memory_to_tensorboard ....................... False
13355
+ log_num_zeros_in_grad ........................... False
13356
+ log_params_norm ................................. False
13357
+ log_progress .................................... False
13358
+ log_straggler ................................... False
13359
+ log_throughput .................................. False
13360
+ log_timers_to_tensorboard ....................... False
13361
+ log_validation_ppl_to_tensorboard ............... False
13362
+ log_world_size_to_tensorboard ................... False
13363
+ logging_level ................................... 0
13364
+ loss_scale ...................................... None
13365
+ loss_scale_window ............................... 1000
13366
+ lr .............................................. 0.0005
13367
+ lr_decay_iters .................................. 150000
13368
+ lr_decay_samples ................................ None
13369
+ lr_decay_style .................................. cosine
13370
+ lr_warmup_fraction .............................. None
13371
+ lr_warmup_init .................................. 0.0
13372
+ lr_warmup_iters ................................. 2
13373
+ lr_warmup_samples ............................... 0
13374
+ lr_wsd_decay_iters .............................. None
13375
+ lr_wsd_decay_samples ............................ None
13376
+ lr_wsd_decay_style .............................. exponential
13377
+ main_grads_dtype ................................ torch.float32
13378
+ main_params_dtype ............................... torch.float32
13379
+ make_vocab_size_divisible_by .................... 128
13380
+ mamba_head_dim .................................. 64
13381
+ mamba_num_groups ................................ 8
13382
+ mamba_num_heads ................................. None
13383
+ mamba_state_dim ................................. 128
13384
+ manual_gc ....................................... False
13385
+ manual_gc_eval .................................. True
13386
+ manual_gc_interval .............................. 0
13387
+ mask_factor ..................................... 1.0
13388
+ mask_prob ....................................... 0.15
13389
+ mask_type ....................................... random
13390
+ masked_softmax_fusion ........................... True
13391
+ max_position_embeddings ......................... 131072
13392
+ max_tokens_to_oom ............................... 12000
13393
+ memory_snapshot_path ............................ snapshot.pickle
13394
+ merge_file ...................................... merges.txt
13395
+ micro_batch_size ................................ 1
13396
+ microbatch_group_size_per_vp_stage .............. None
13397
+ mid_level_dataset_surplus ....................... 0.005
13398
+ min_loss_scale .................................. 1.0
13399
+ min_lr .......................................... 0.0
13400
+ mlp_chunks_for_prefill .......................... 1
13401
+ mmap_bin_files .................................. True
13402
+ mock_data ....................................... True
13403
+ moe_apply_probs_on_input ........................ False
13404
+ moe_aux_loss_coeff .............................. 0.0
13405
+ moe_enable_deepep ............................... False
13406
+ moe_expert_capacity_factor ...................... None
13407
+ moe_extended_tp ................................. False
13408
+ moe_ffn_hidden_size ............................. None
13409
+ moe_grouped_gemm ................................ False
13410
+ moe_input_jitter_eps ............................ None
13411
+ moe_layer_freq .................................. 1
13412
+ moe_layer_recompute ............................. False
13413
+ moe_pad_expert_input_to_capacity ................ False
13414
+ moe_per_layer_logging ........................... False
13415
+ moe_permute_fusion .............................. False
13416
+ moe_router_bias_update_rate ..................... 0.001
13417
+ moe_router_dtype ................................ None
13418
+ moe_router_enable_expert_bias ................... False
13419
+ moe_router_force_load_balancing ................. False
13420
+ moe_router_group_topk ........................... None
13421
+ moe_router_load_balancing_type .................. aux_loss
13422
+ moe_router_num_groups ........................... None
13423
+ moe_router_padding_for_fp8 ...................... False
13424
+ moe_router_pre_softmax .......................... False
13425
+ moe_router_score_function ....................... softmax
13426
+ moe_router_topk ................................. 2
13427
+ moe_router_topk_scaling_factor .................. None
13428
+ moe_shared_expert_intermediate_size ............. None
13429
+ moe_shared_expert_overlap ....................... False
13430
+ moe_token_dispatcher_type ....................... allgather
13431
+ moe_token_drop_policy ........................... probs
13432
+ moe_use_legacy_grouped_gemm ..................... False
13433
+ moe_use_upcycling ............................... False
13434
+ moe_z_loss_coeff ................................ None
13435
+ mrope_section ................................... None
13436
+ mscale .......................................... 1.0
13437
+ mscale_all_dim .................................. 1.0
13438
+ mtp_loss_scaling_factor ......................... 0.1
13439
+ mtp_num_layers .................................. None
13440
+ multi_latent_attention .......................... False
13441
+ nccl_all_reduce_for_prefill ..................... False
13442
+ nccl_communicator_config_path ................... None
13443
+ nccl_ub ......................................... False
13444
+ no_load_optim ................................... None
13445
+ no_load_rng ..................................... None
13446
+ no_persist_layer_norm ........................... False
13447
+ no_rope_freq .................................... None
13448
+ no_save_optim ................................... None
13449
+ no_save_rng ..................................... None
13450
+ non_persistent_ckpt_type ........................ None
13451
+ non_persistent_global_ckpt_dir .................. None
13452
+ non_persistent_local_ckpt_algo .................. fully_parallel
13453
+ non_persistent_local_ckpt_dir ................... None
13454
+ non_persistent_save_interval .................... None
13455
+ norm_epsilon .................................... 1e-05
13456
+ normalization ................................... LayerNorm
13457
+ num_attention_heads ............................. 64
13458
+ num_channels .................................... 3
13459
+ num_classes ..................................... 1000
13460
+ num_dataset_builder_threads ..................... 1
13461
+ num_distributed_optimizer_instances ............. 1
13462
+ num_experts ..................................... None
13463
+ num_layers ...................................... 2
13464
+ num_layers_at_end_in_bf16 ....................... 1
13465
+ num_layers_at_start_in_bf16 ..................... 1
13466
+ num_layers_per_virtual_pipeline_stage ........... None
13467
+ num_query_groups ................................ 16
13468
+ num_virtual_stages_per_pipeline_rank ............ None
13469
+ num_workers ..................................... 2
13470
+ object_storage_cache_path ....................... None
13471
+ one_logger_async ................................ False
13472
+ one_logger_project .............................. megatron-lm
13473
+ one_logger_run_name ............................. None
13474
+ onnx_safe ....................................... None
13475
+ openai_gelu ..................................... False
13476
+ optimizer ....................................... adam
13477
+ optimizer_cpu_offload ........................... False
13478
+ optimizer_offload_fraction ...................... 1.0
13479
+ output_bert_embeddings .......................... False
13480
+ overlap_cpu_optimizer_d2h_h2d ................... False
13481
+ overlap_grad_reduce ............................. False
13482
+ overlap_p2p_comm ................................ False
13483
+ overlap_p2p_comm_warmup_flush ................... False
13484
+ overlap_param_gather ............................ False
13485
+ overlap_param_gather_with_optimizer_step ........ False
13486
+ override_opt_param_scheduler .................... False
13487
+ params_dtype .................................... torch.float16
13488
+ patch_dim ....................................... 16
13489
+ per_split_data_args_path ........................ None
13490
+ perform_initialization .......................... True
13491
+ pin_cpu_grads ................................... True
13492
+ pin_cpu_params .................................. True
13493
+ pipeline_model_parallel_comm_backend ............ None
13494
+ pipeline_model_parallel_size .................... 1
13495
+ pipeline_model_parallel_split_rank .............. None
13496
+ position_embedding_type ......................... learned_absolute
13497
+ pretrained_checkpoint ........................... None
13498
+ profile ......................................... False
13499
+ profile_ranks ................................... [0]
13500
+ profile_step_end ................................ 12
13501
+ profile_step_start .............................. 10
13502
+ q_lora_rank ..................................... None
13503
+ qk_head_dim ..................................... 128
13504
+ qk_l2_norm ...................................... False
13505
+ qk_layernorm .................................... False
13506
+ qk_pos_emb_head_dim ............................. 64
13507
+ query_in_block_prob ............................. 0.1
13508
+ rampup_batch_size ............................... None
13509
+ rank ............................................ 0
13510
+ recompute_granularity ........................... None
13511
+ recompute_method ................................ None
13512
+ recompute_modules ............................... None
13513
+ recompute_num_layers ............................ None
13514
+ record_memory_history ........................... False
13515
+ relative_attention_max_distance ................. 128
13516
+ relative_attention_num_buckets .................. 32
13517
+ replication ..................................... False
13518
+ replication_factor .............................. 2
13519
+ replication_jump ................................ None
13520
+ rerun_mode ...................................... disabled
13521
+ reset_attention_mask ............................ False
13522
+ reset_position_ids .............................. False
13523
+ result_rejected_tracker_filename ................ None
13524
+ retriever_report_topk_accuracies ................ []
13525
+ retriever_score_scaling ......................... False
13526
+ retriever_seq_length ............................ 256
13527
+ retro_add_retriever ............................. False
13528
+ retro_attention_gate ............................ 1
13529
+ retro_cyclic_train_iters ........................ None
13530
+ retro_encoder_attention_dropout ................. 0.1
13531
+ retro_encoder_hidden_dropout .................... 0.1
13532
+ retro_encoder_layers ............................ 2
13533
+ retro_num_neighbors ............................. 2
13534
+ retro_num_retrieved_chunks ...................... 2
13535
+ retro_project_dir ............................... None
13536
+ retro_verify_neighbor_count ..................... True
13537
+ rope_scaling_factor ............................. 8.0
13538
+ rotary_base ..................................... 10000
13539
+ rotary_interleaved .............................. False
13540
+ rotary_percent .................................. 1.0
13541
+ rotary_scaling_factor ........................... 1.0
13542
+ rotary_seq_len_interpolation_factor ............. None
13543
+ run_workload_inspector_server ................... False
13544
+ sample_rate ..................................... 1.0
13545
+ save ............................................ gpt-checkpoint
13546
+ save_interval ................................... 16
13547
+ scatter_gather_tensors_in_pipeline .............. True
13548
+ seed ............................................ 1234
13549
+ seq_length ...................................... 131072
13550
+ sequence_parallel ............................... False
13551
+ sgd_momentum .................................... 0.9
13552
+ short_seq_prob .................................. 0.1
13553
+ skip_train ...................................... False
13554
+ skipped_train_samples ........................... 0
13555
+ spec ............................................ None
13556
+ split ........................................... None
13557
+ squared_relu .................................... False
13558
+ start_weight_decay .............................. 0.1
13559
+ straggler_ctrlr_port ............................ 65535
13560
+ straggler_minmax_count .......................... 1
13561
+ suggested_communication_unit_size ............... None
13562
+ swiglu .......................................... False
13563
+ swin_backbone_type .............................. tiny
13564
+ symmetric_ar_type ............................... None
13565
+ te_rng_tracker .................................. False
13566
+ tensor_model_parallel_size ...................... 8
13567
+ tensorboard_dir ................................. tensorboard-logs/
13568
+ tensorboard_log_interval ........................ 1
13569
+ tensorboard_queue_size .......................... 1000
13570
+ test_data_path .................................. None
13571
+ test_mode ....................................... False
13572
+ tiktoken_num_special_tokens ..................... 1000
13573
+ tiktoken_pattern ................................ None
13574
+ tiktoken_special_tokens ......................... None
13575
+ timing_log_level ................................ 0
13576
+ timing_log_option ............................... minmax
13577
+ titles_data_path ................................ None
13578
+ tokenizer_model ................................. None
13579
+ tokenizer_type .................................. GPT2BPETokenizer
13580
+ torch_fsdp2_reshard_after_forward ............... True
13581
+ tp_comm_bootstrap_backend ....................... nccl
13582
+ tp_comm_bulk_dgrad .............................. True
13583
+ tp_comm_bulk_wgrad .............................. True
13584
+ tp_comm_overlap ................................. False
13585
+ tp_comm_overlap_ag .............................. True
13586
+ tp_comm_overlap_cfg ............................. None
13587
+ tp_comm_overlap_rs .............................. True
13588
+ tp_comm_overlap_rs_dgrad ........................ False
13589
+ tp_comm_split_ag ................................ True
13590
+ tp_comm_split_rs ................................ True
13591
+ train_data_path ................................. None
13592
+ train_iters ..................................... 10
13593
+ train_samples ................................... None
13594
+ train_sync_interval ............................. None
13595
+ transformer_impl ................................ transformer_engine
13596
+ transformer_pipeline_model_parallel_size ........ 1
13597
+ untie_embeddings_and_output_weights ............. False
13598
+ use_checkpoint_args ............................. False
13599
+ use_checkpoint_opt_param_scheduler .............. False
13600
+ use_cpu_initialization .......................... None
13601
+ use_custom_fsdp ................................. False
13602
+ use_dist_ckpt ................................... True
13603
+ use_dist_ckpt_deprecated ........................ False
13604
+ use_distributed_optimizer ....................... False
13605
+ use_flash_attn .................................. False
13606
+ use_legacy_models ............................... False
13607
+ use_mp_args_from_checkpoint_args ................ False
13608
+ use_one_sent_docs ............................... False
13609
+ use_persistent_ckpt_worker ...................... False
13610
+ use_precision_aware_optimizer ................... False
13611
+ use_pytorch_profiler ............................ False
13612
+ use_ring_exchange_p2p ........................... False
13613
+ use_rope_scaling ................................ False
13614
+ use_rotary_position_embeddings .................. False
13615
+ use_sharp ....................................... False
13616
+ use_tokenizer_model_from_checkpoint_args ........ True
13617
+ use_torch_fsdp2 ................................. False
13618
+ use_torch_optimizer_for_cpu_offload ............. False
13619
+ use_tp_pp_dp_mapping ............................ False
13620
+ v_head_dim ...................................... 128
13621
+ valid_data_path ................................. None
13622
+ variable_seq_lengths ............................ False
13623
+ virtual_pipeline_model_parallel_size ............ None
13624
+ vision_backbone_type ............................ vit
13625
+ vision_pretraining .............................. False
13626
+ vision_pretraining_type ......................... classify
13627
+ vocab_extra_ids ................................. 0
13628
+ vocab_file ...................................... vocab.json
13629
+ vocab_size ...................................... None
13630
+ wandb_exp_name ..................................
13631
+ wandb_project ...................................
13632
+ wandb_save_dir ..................................
13633
+ weight_decay .................................... 0.1
13634
+ weight_decay_incr_style ......................... constant
13635
+ wgrad_deferral_limit ............................ 0
13636
+ world_size ...................................... 16
13637
+ yaml_cfg ........................................ None
13638
+ -------------------- end of arguments ---------------------
13639
+ INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1
13640
+ > building GPT2BPETokenizer tokenizer ...
13641
+ INFO:megatron.training.initialize:Setting logging level to 0
13642
+ INFO:megatron.training.initialize:Setting logging level to 0
13643
+ > padded vocab (size: 50257) with 943 dummy tokens (new size: 51200)
13644
+ INFO:megatron.training.initialize:Setting logging level to 0
13645
+ WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED
13646
+ > initializing torch distributed ...
13647
+ INFO:megatron.training.initialize:Setting logging level to 0
13648
+ INFO:megatron.training.initialize:Setting logging level to 0
13649
+ > initialized tensor model parallel with size 8
13650
+ > initialized pipeline model parallel with size 1
13651
+ > setting random seeds to 1234 ...
13652
+ > compiling dataset index builder ...
13653
+ INFO:megatron.training.initialize:Setting logging level to 0
13654
+ make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
13655
+ INFO:megatron.training.initialize:Setting logging level to 0
13656
+ make: Nothing to be done for 'default'.
13657
+ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
13658
+ >>> done with dataset index builder. Compilation time: 0.038 seconds
13659
+ WARNING: constraints for invoking optimized fused softmax kernel are not met. We default back to unfused kernel invocations.
13660
+ > compiling and loading fused kernels ...
13661
+ >>> done with compiling and loading fused kernels. Compilation time: 2.517 seconds
13662
+ time to initialize megatron (seconds): 9.194
13663
+ [after megatron is initialized] datetime: 2025-06-21 21:34:16
13664
+ building GPT model ...
13665
+ >>> embedding
13666
+ >>> decoder
13667
+ >>> output_layer
13668
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
13669
+ >>> embedding
13670
+ >>> decoder
13671
+ >>> output_layer
13672
+ >>> embedding
13673
+ >>> decoder
13674
+ >>> output_layer
13675
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 607188480
13676
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 607188480
13677
+ >>> embedding
13678
+ >>> decoder
13679
+ >>> output_layer
13680
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 607188480
13681
+ >>> embedding
13682
+ >>> decoder
13683
+ >>> output_layer
13684
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 607188480
13685
+ >>> embedding
13686
+ >>> decoder
13687
+ >>> output_layer
13688
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
13689
+ >>> embedding
13690
+ >>> decoder
13691
+ >>> output_layer
13692
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
13693
+ >>> embedding
13694
+ >>> decoder
13695
+ >>> output_layer
13696
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 607188480
13697
+ >>> embedding
13698
+ >>> decoder
13699
+ >>> output_layer
13700
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
13701
+ >>> embedding
13702
+ >>> decoder
13703
+ >>> output_layer
13704
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 607188480
13705
+ >>> embedding
13706
+ >>> decoder
13707
+ >>> output_layer
13708
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 607188480
13709
+ >>> embedding
13710
+ >>> decoder
13711
+ >>> output_layer
13712
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 607188480
13713
+ >>> embedding
13714
+ >>> decoder
13715
+ >>> output_layer
13716
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 607188480
13717
+ >>> embedding
13718
+ >>> decoder
13719
+ >>> output_layer
13720
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
13721
+ >>> embedding
13722
+ >>> decoder
13723
+ >>> output_layer
13724
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
13725
+ INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False)
13726
+ INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1
13727
+ Params for bucket 1 (607188480 elements, 607188480 padded size):
13728
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight
13729
+ module.decoder.layers.1.self_attention.linear_qkv.bias
13730
+ module.decoder.layers.0.mlp.linear_fc2.bias
13731
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight
13732
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias
13733
+ module.decoder.final_layernorm.weight
13734
+ module.decoder.layers.1.mlp.linear_fc1.weight
13735
+ module.decoder.layers.0.mlp.linear_fc1.weight
13736
+ module.decoder.layers.1.mlp.linear_fc2.bias
13737
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight
13738
+ module.decoder.layers.0.self_attention.linear_qkv.weight
13739
+ module.decoder.layers.0.self_attention.linear_proj.weight
13740
+ module.embedding.word_embeddings.weight
13741
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias
13742
+ module.decoder.layers.0.self_attention.linear_proj.bias
13743
+ module.embedding.position_embeddings.weight
13744
+ module.decoder.layers.1.mlp.linear_fc1.bias
13745
+ module.decoder.layers.0.mlp.linear_fc2.weight
13746
+ module.decoder.layers.0.mlp.linear_fc1.bias
13747
+ module.decoder.layers.1.self_attention.linear_qkv.weight
13748
+ module.decoder.layers.1.self_attention.linear_proj.weight
13749
+ module.decoder.layers.0.self_attention.linear_qkv.bias
13750
+ module.decoder.layers.1.mlp.linear_fc2.weight
13751
+ module.decoder.layers.1.self_attention.linear_proj.bias
13752
+ module.decoder.final_layernorm.bias
13753
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias
13754
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias
13755
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight
13756
+ INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x14ab483f68d0>, config_logger_dir='')
13757
+ INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
13758
+ >>> embedding
13759
+ >>> decoder
13760
+ >>> output_layer
13761
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 607188480
13762
+ WARNING: could not find the metadata file gpt-checkpoint/latest_checkpointed_iteration.txt
13763
+ will not load any checkpoints and will start from random
13764
+ (min, max) time across ranks (ms):
13765
+ load-checkpoint ................................: (3.70, 4.37)
13766
+ [after model, optimizer, and learning rate scheduler are built] datetime: 2025-06-21 21:34:24
13767
+ > building train, validation, and test datasets ...
13768
+ > datasets target sizes (minimum size):
13769
+ train: 10
13770
+ validation: 1
13771
+ test: 1
13772
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let mock = True, as both blend and blend_per_split are None
13773
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split = 1,1,1, an arbitrarily even split, as mock is True
13774
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split_matrix = [(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)]
13775
+ > building train, validation, and test datasets for GPT ...
13776
+ INFO:megatron.core.datasets.blended_megatron_dataset_builder:Building MockGPTDataset splits with sizes=(10, 1, 1) and config=GPTDatasetConfig(random_seed=1234, sequence_length=131072, blend=None, blend_per_split=None, split='1,1,1', split_matrix=[(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)], num_dataset_builder_threads=1, path_to_cache=None, mmap_bin_files=True, mock=True, tokenizer=<megatron.training.tokenizer.tokenizer._GPT2BPETokenizer object at 0x14ab4880a8a0>, mid_level_dataset_surplus=0.005, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, create_attention_mask=True, drop_last_partial_validation_sequence=True, add_extra_token_to_sequence=True, object_storage_cache_path=None)
13777
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset train indices
13778
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
13779
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
13780
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.007208 seconds
13781
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
13782
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
13783
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset valid indices
13784
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
13785
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
13786
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001747 seconds
13787
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
13788
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
13789
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset test indices
13790
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
13791
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
13792
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001477 seconds
13793
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
13794
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
13795
+ > finished creating GPT datasets ...
13796
+ [after dataloaders are built] datetime: 2025-06-21 21:34:24
13797
+ done with setup ...
13798
+ (min, max) time across ranks (ms):
13799
+ model-and-optimizer-setup ......................: (7671.11, 7677.53)
13800
+ train/valid/test-data-iterators-setup ..........: (20.05, 123.01)
13801
+ training ...
13802
+ Setting rerun_state_machine.current_iteration to 0...
13803
+ [before the start of training step] datetime: 2025-06-21 21:34:24
13804
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13805
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13806
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13807
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13808
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13809
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13810
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13811
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13812
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13813
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13814
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13815
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13816
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13817
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13818
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13819
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13820
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13821
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13822
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13823
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13824
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13825
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13826
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13827
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13828
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13829
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13830
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13831
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13832
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13833
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 132.18 GiB is free. Including non-PyTorch memory, this process has 7.63 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
13834
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
13835
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 132.19 GiB is free. Including non-PyTorch memory, this process has 7.61 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
attnserver.run_attnserver.slurm.sh.343207.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343207.out.log CHANGED
@@ -14558,3 +14558,1287 @@ CHECKPOINT_PATH: gpt-checkpoint
14558
  PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
14559
  --------------------------------
14560
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14558
  PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
14559
  --------------------------------
14560
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
14561
+ INFO:megatron.training.initialize:Setting logging level to 0
14562
+ using world size: 8, data-parallel size: 1, context-parallel size: 1, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 8, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0
14563
+ Number of virtual stages per pipeline stage: None
14564
+ WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used
14565
+ using torch.float16 for parameters ...
14566
+ ------------------------ arguments ------------------------
14567
+ account_for_embedding_in_pipeline_split ......... False
14568
+ account_for_loss_in_pipeline_split .............. False
14569
+ accumulate_allreduce_grads_in_fp32 .............. False
14570
+ adam_beta1 ...................................... 0.9
14571
+ adam_beta2 ...................................... 0.999
14572
+ adam_eps ........................................ 1e-08
14573
+ add_bias_linear ................................. True
14574
+ add_position_embedding .......................... True
14575
+ add_qkv_bias .................................... True
14576
+ adlr_autoresume ................................. False
14577
+ adlr_autoresume_interval ........................ 1000
14578
+ align_grad_reduce ............................... True
14579
+ align_param_gather .............................. False
14580
+ app_tag_run_name ................................ None
14581
+ app_tag_run_version ............................. 0.0.0
14582
+ apply_layernorm_1p .............................. False
14583
+ apply_query_key_layer_scaling ................... False
14584
+ apply_residual_connection_post_layernorm ........ False
14585
+ apply_rope_fusion ............................... False
14586
+ async_save ...................................... None
14587
+ async_tensor_model_parallel_allreduce ........... True
14588
+ attention_backend ............................... AttnBackend.auto
14589
+ attention_dropout ............................... 0.1
14590
+ attention_softmax_in_fp32 ....................... False
14591
+ auto_detect_ckpt_format ......................... False
14592
+ barrier_with_L1_time ............................ True
14593
+ bert_binary_head ................................ True
14594
+ bert_embedder_type .............................. megatron
14595
+ bert_load ....................................... None
14596
+ bf16 ............................................ False
14597
+ bias_dropout_fusion ............................. True
14598
+ bias_gelu_fusion ................................ True
14599
+ bias_swiglu_fusion .............................. True
14600
+ biencoder_projection_dim ........................ 0
14601
+ biencoder_shared_query_context_model ............ False
14602
+ block_data_path ................................. None
14603
+ calc_ft_timeouts ................................ False
14604
+ calculate_per_token_loss ........................ False
14605
+ check_for_large_grads ........................... False
14606
+ check_for_nan_in_loss_and_grad .................. False
14607
+ check_for_spiky_loss ............................ False
14608
+ check_weight_hash_across_dp_replicas_interval ... None
14609
+ ckpt_assume_constant_structure .................. False
14610
+ ckpt_convert_format ............................. None
14611
+ ckpt_convert_save ............................... None
14612
+ ckpt_convert_update_legacy_dist_opt_format ...... False
14613
+ ckpt_format ..................................... torch_dist
14614
+ ckpt_fully_parallel_load ........................ False
14615
+ ckpt_fully_parallel_save ........................ True
14616
+ ckpt_fully_parallel_save_deprecated ............. False
14617
+ ckpt_step ....................................... None
14618
+ classes_fraction ................................ 1.0
14619
+ clip_grad ....................................... 1.0
14620
+ clone_scatter_output_in_embedding ............... True
14621
+ config_logger_dir ...............................
14622
+ consumed_train_samples .......................... 0
14623
+ consumed_valid_samples .......................... 0
14624
+ context_parallel_size ........................... 1
14625
+ cp_comm_type .................................... ['p2p']
14626
+ create_attention_mask_in_dataloader ............. True
14627
+ cross_entropy_fusion_impl ....................... native
14628
+ cross_entropy_loss_fusion ....................... False
14629
+ cuda_graph_scope ................................ full
14630
+ cuda_graph_warmup_steps ......................... 3
14631
+ data_args_path .................................. None
14632
+ data_cache_path ................................. None
14633
+ data_parallel_random_init ....................... False
14634
+ data_parallel_sharding_strategy ................. no_shard
14635
+ data_parallel_size .............................. 1
14636
+ data_path ....................................... None
14637
+ data_per_class_fraction ......................... 1.0
14638
+ data_sharding ................................... True
14639
+ dataloader_type ................................. single
14640
+ ddp_average_in_collective ....................... False
14641
+ ddp_bucket_size ................................. None
14642
+ ddp_num_buckets ................................. None
14643
+ ddp_pad_buckets_for_high_nccl_busbw ............. False
14644
+ decoder_first_pipeline_num_layers ............... None
14645
+ decoder_last_pipeline_num_layers ................ None
14646
+ decoder_num_layers .............................. None
14647
+ decoder_seq_length .............................. None
14648
+ decoupled_lr .................................... None
14649
+ decoupled_min_lr ................................ None
14650
+ decrease_batch_size_if_needed ................... False
14651
+ defer_embedding_wgrad_compute ................... False
14652
+ deprecated_use_mcore_models ..................... False
14653
+ deterministic_mode .............................. False
14654
+ dino_bottleneck_size ............................ 256
14655
+ dino_freeze_last_layer .......................... 1
14656
+ dino_head_hidden_size ........................... 2048
14657
+ dino_local_crops_number ......................... 10
14658
+ dino_local_img_size ............................. 96
14659
+ dino_norm_last_layer ............................ False
14660
+ dino_teacher_temp ............................... 0.07
14661
+ dino_warmup_teacher_temp ........................ 0.04
14662
+ dino_warmup_teacher_temp_epochs ................. 30
14663
+ disable_bf16_reduced_precision_matmul ........... False
14664
+ disable_mamba_mem_eff_path ...................... False
14665
+ disable_straggler_on_startup .................... False
14666
+ dist_ckpt_format_deprecated ..................... None
14667
+ dist_ckpt_strictness ............................ assume_ok_unexpected
14668
+ distribute_saved_activations .................... False
14669
+ distributed_backend ............................. nccl
14670
+ distributed_timeout_minutes ..................... 10
14671
+ embedding_path .................................. None
14672
+ empty_unused_memory_level ....................... 0
14673
+ enable_cuda_graph ............................... False
14674
+ enable_ft_package ............................... False
14675
+ enable_gloo_process_groups ...................... True
14676
+ enable_msc ...................................... True
14677
+ enable_one_logger ............................... True
14678
+ encoder_num_layers .............................. 2
14679
+ encoder_pipeline_model_parallel_size ............ 0
14680
+ encoder_seq_length .............................. 65536
14681
+ encoder_tensor_model_parallel_size .............. 0
14682
+ end_weight_decay ................................ 0.1
14683
+ eod_mask_loss ................................... False
14684
+ error_injection_rate ............................ 0
14685
+ error_injection_type ............................ transient_error
14686
+ eval_interval ................................... 16
14687
+ eval_iters ...................................... 1
14688
+ evidence_data_path .............................. None
14689
+ exit_duration_in_mins ........................... None
14690
+ exit_interval ................................... None
14691
+ exit_on_missing_checkpoint ...................... False
14692
+ exit_signal_handler ............................. False
14693
+ exp_avg_dtype ................................... torch.float32
14694
+ exp_avg_sq_dtype ................................ torch.float32
14695
+ expert_model_parallel_size ...................... 1
14696
+ expert_tensor_parallel_size ..................... 8
14697
+ external_cuda_graph ............................. False
14698
+ ffn_hidden_size ................................. 16384
14699
+ finetune ........................................ False
14700
+ first_last_layers_bf16 .......................... False
14701
+ flash_decode .................................... False
14702
+ fp16 ............................................ True
14703
+ fp16_lm_cross_entropy ........................... False
14704
+ fp32_residual_connection ........................ False
14705
+ fp8 ............................................. None
14706
+ fp8_amax_compute_algo ........................... most_recent
14707
+ fp8_amax_history_len ............................ 1
14708
+ fp8_interval .................................... 1
14709
+ fp8_margin ...................................... 0
14710
+ fp8_param_gather ................................ False
14711
+ fp8_recipe ...................................... delayed
14712
+ fp8_wgrad ....................................... True
14713
+ fsdp_double_buffer .............................. False
14714
+ global_batch_size ............................... 1
14715
+ grad_reduce_in_bf16 ............................. False
14716
+ gradient_accumulation_fusion .................... True
14717
+ gradient_reduce_div_fusion ...................... True
14718
+ group_query_attention ........................... True
14719
+ head_lr_mult .................................... 1.0
14720
+ heterogeneous_layers_config_encoded_json ........ None
14721
+ heterogeneous_layers_config_path ................ None
14722
+ hidden_dropout .................................. 0.1
14723
+ hidden_size ..................................... 4096
14724
+ hierarchical_context_parallel_sizes ............. None
14725
+ high_priority_stream_groups ..................... []
14726
+ hybrid_attention_ratio .......................... 0.0
14727
+ hybrid_mlp_ratio ................................ 0.0
14728
+ hybrid_override_pattern ......................... None
14729
+ hysteresis ...................................... 2
14730
+ ict_head_size ................................... None
14731
+ ict_load ........................................ None
14732
+ img_h ........................................... 224
14733
+ img_w ........................................... 224
14734
+ indexer_batch_size .............................. 128
14735
+ indexer_log_interval ............................ 1000
14736
+ inference_batch_times_seqlen_threshold .......... -1
14737
+ inference_dynamic_batching ...................... False
14738
+ inference_dynamic_batching_buffer_guaranteed_fraction 0.2
14739
+ inference_dynamic_batching_buffer_overflow_factor None
14740
+ inference_dynamic_batching_buffer_size_gb ....... 40.0
14741
+ inference_dynamic_batching_chunk_size ........... 256
14742
+ inference_dynamic_batching_max_requests_override None
14743
+ inference_dynamic_batching_max_tokens_override .. None
14744
+ inference_max_batch_size ........................ 8
14745
+ inference_max_seq_length ........................ 2560
14746
+ inference_rng_tracker ........................... False
14747
+ init_method_std ................................. 0.02
14748
+ init_method_xavier_uniform ...................... False
14749
+ init_model_with_meta_device ..................... False
14750
+ initial_loss_scale .............................. 4294967296
14751
+ inprocess_active_world_size ..................... 8
14752
+ inprocess_barrier_timeout ....................... 120
14753
+ inprocess_completion_timeout .................... 120
14754
+ inprocess_empty_cuda_cache ...................... False
14755
+ inprocess_granularity ........................... node
14756
+ inprocess_hard_timeout .......................... 90
14757
+ inprocess_heartbeat_interval .................... 30
14758
+ inprocess_heartbeat_timeout ..................... 60
14759
+ inprocess_last_call_wait ........................ 1
14760
+ inprocess_max_iterations ........................ None
14761
+ inprocess_monitor_process_interval .............. 1.0
14762
+ inprocess_monitor_thread_interval ............... 1.0
14763
+ inprocess_progress_watchdog_interval ............ 1.0
14764
+ inprocess_restart ............................... False
14765
+ inprocess_soft_timeout .......................... 60
14766
+ inprocess_termination_grace_time ................ 1
14767
+ is_hybrid_model ................................. False
14768
+ iter_per_epoch .................................. 1250
14769
+ iterations_to_skip .............................. []
14770
+ keep_fp8_transpose_cache_when_using_custom_fsdp . False
14771
+ kv_channels ..................................... 64
14772
+ kv_lora_rank .................................... 32
14773
+ lazy_mpu_init ................................... None
14774
+ load ............................................ gpt-checkpoint
14775
+ load_model_opt_format ........................... False
14776
+ local_rank ...................................... 0
14777
+ log_interval .................................... 1
14778
+ log_loss_scale_to_tensorboard ................... True
14779
+ log_memory_to_tensorboard ....................... False
14780
+ log_num_zeros_in_grad ........................... False
14781
+ log_params_norm ................................. False
14782
+ log_progress .................................... False
14783
+ log_straggler ................................... False
14784
+ log_throughput .................................. False
14785
+ log_timers_to_tensorboard ....................... False
14786
+ log_validation_ppl_to_tensorboard ............... False
14787
+ log_world_size_to_tensorboard ................... False
14788
+ logging_level ................................... 0
14789
+ loss_scale ...................................... None
14790
+ loss_scale_window ............................... 1000
14791
+ lr .............................................. 0.0005
14792
+ lr_decay_iters .................................. 150000
14793
+ lr_decay_samples ................................ None
14794
+ lr_decay_style .................................. cosine
14795
+ lr_warmup_fraction .............................. None
14796
+ lr_warmup_init .................................. 0.0
14797
+ lr_warmup_iters ................................. 2
14798
+ lr_warmup_samples ............................... 0
14799
+ lr_wsd_decay_iters .............................. None
14800
+ lr_wsd_decay_samples ............................ None
14801
+ lr_wsd_decay_style .............................. exponential
14802
+ main_grads_dtype ................................ torch.float32
14803
+ main_params_dtype ............................... torch.float32
14804
+ make_vocab_size_divisible_by .................... 128
14805
+ mamba_head_dim .................................. 64
14806
+ mamba_num_groups ................................ 8
14807
+ mamba_num_heads ................................. None
14808
+ mamba_state_dim ................................. 128
14809
+ manual_gc ....................................... False
14810
+ manual_gc_eval .................................. True
14811
+ manual_gc_interval .............................. 0
14812
+ mask_factor ..................................... 1.0
14813
+ mask_prob ....................................... 0.15
14814
+ mask_type ....................................... random
14815
+ masked_softmax_fusion ........................... True
14816
+ max_position_embeddings ......................... 65536
14817
+ max_tokens_to_oom ............................... 12000
14818
+ memory_snapshot_path ............................ snapshot.pickle
14819
+ merge_file ...................................... merges.txt
14820
+ micro_batch_size ................................ 1
14821
+ microbatch_group_size_per_vp_stage .............. None
14822
+ mid_level_dataset_surplus ....................... 0.005
14823
+ min_loss_scale .................................. 1.0
14824
+ min_lr .......................................... 0.0
14825
+ mlp_chunks_for_prefill .......................... 1
14826
+ mmap_bin_files .................................. True
14827
+ mock_data ....................................... True
14828
+ moe_apply_probs_on_input ........................ False
14829
+ moe_aux_loss_coeff .............................. 0.0
14830
+ moe_enable_deepep ............................... False
14831
+ moe_expert_capacity_factor ...................... None
14832
+ moe_extended_tp ................................. False
14833
+ moe_ffn_hidden_size ............................. None
14834
+ moe_grouped_gemm ................................ False
14835
+ moe_input_jitter_eps ............................ None
14836
+ moe_layer_freq .................................. 1
14837
+ moe_layer_recompute ............................. False
14838
+ moe_pad_expert_input_to_capacity ................ False
14839
+ moe_per_layer_logging ........................... False
14840
+ moe_permute_fusion .............................. False
14841
+ moe_router_bias_update_rate ..................... 0.001
14842
+ moe_router_dtype ................................ None
14843
+ moe_router_enable_expert_bias ................... False
14844
+ moe_router_force_load_balancing ................. False
14845
+ moe_router_group_topk ........................... None
14846
+ moe_router_load_balancing_type .................. aux_loss
14847
+ moe_router_num_groups ........................... None
14848
+ moe_router_padding_for_fp8 ...................... False
14849
+ moe_router_pre_softmax .......................... False
14850
+ moe_router_score_function ....................... softmax
14851
+ moe_router_topk ................................. 2
14852
+ moe_router_topk_scaling_factor .................. None
14853
+ moe_shared_expert_intermediate_size ............. None
14854
+ moe_shared_expert_overlap ....................... False
14855
+ moe_token_dispatcher_type ....................... allgather
14856
+ moe_token_drop_policy ........................... probs
14857
+ moe_use_legacy_grouped_gemm ..................... False
14858
+ moe_use_upcycling ............................... False
14859
+ moe_z_loss_coeff ................................ None
14860
+ mrope_section ................................... None
14861
+ mscale .......................................... 1.0
14862
+ mscale_all_dim .................................. 1.0
14863
+ mtp_loss_scaling_factor ......................... 0.1
14864
+ mtp_num_layers .................................. None
14865
+ multi_latent_attention .......................... False
14866
+ nccl_all_reduce_for_prefill ..................... False
14867
+ nccl_communicator_config_path ................... None
14868
+ nccl_ub ......................................... False
14869
+ no_load_optim ................................... None
14870
+ no_load_rng ..................................... None
14871
+ no_persist_layer_norm ........................... False
14872
+ no_rope_freq .................................... None
14873
+ no_save_optim ................................... None
14874
+ no_save_rng ..................................... None
14875
+ non_persistent_ckpt_type ........................ None
14876
+ non_persistent_global_ckpt_dir .................. None
14877
+ non_persistent_local_ckpt_algo .................. fully_parallel
14878
+ non_persistent_local_ckpt_dir ................... None
14879
+ non_persistent_save_interval .................... None
14880
+ norm_epsilon .................................... 1e-05
14881
+ normalization ................................... LayerNorm
14882
+ num_attention_heads ............................. 64
14883
+ num_channels .................................... 3
14884
+ num_classes ..................................... 1000
14885
+ num_dataset_builder_threads ..................... 1
14886
+ num_distributed_optimizer_instances ............. 1
14887
+ num_experts ..................................... None
14888
+ num_layers ...................................... 2
14889
+ num_layers_at_end_in_bf16 ....................... 1
14890
+ num_layers_at_start_in_bf16 ..................... 1
14891
+ num_layers_per_virtual_pipeline_stage ........... None
14892
+ num_query_groups ................................ 16
14893
+ num_virtual_stages_per_pipeline_rank ............ None
14894
+ num_workers ..................................... 2
14895
+ object_storage_cache_path ....................... None
14896
+ one_logger_async ................................ False
14897
+ one_logger_project .............................. megatron-lm
14898
+ one_logger_run_name ............................. None
14899
+ onnx_safe ....................................... None
14900
+ openai_gelu ..................................... False
14901
+ optimizer ....................................... adam
14902
+ optimizer_cpu_offload ........................... False
14903
+ optimizer_offload_fraction ...................... 1.0
14904
+ output_bert_embeddings .......................... False
14905
+ overlap_cpu_optimizer_d2h_h2d ................... False
14906
+ overlap_grad_reduce ............................. False
14907
+ overlap_p2p_comm ................................ False
14908
+ overlap_p2p_comm_warmup_flush ................... False
14909
+ overlap_param_gather ............................ False
14910
+ overlap_param_gather_with_optimizer_step ........ False
14911
+ override_opt_param_scheduler .................... False
14912
+ params_dtype .................................... torch.float16
14913
+ patch_dim ....................................... 16
14914
+ per_split_data_args_path ........................ None
14915
+ perform_initialization .......................... True
14916
+ pin_cpu_grads ................................... True
14917
+ pin_cpu_params .................................. True
14918
+ pipeline_model_parallel_comm_backend ............ None
14919
+ pipeline_model_parallel_size .................... 1
14920
+ pipeline_model_parallel_split_rank .............. None
14921
+ position_embedding_type ......................... learned_absolute
14922
+ pretrained_checkpoint ........................... None
14923
+ profile ......................................... False
14924
+ profile_ranks ................................... [0]
14925
+ profile_step_end ................................ 12
14926
+ profile_step_start .............................. 10
14927
+ q_lora_rank ..................................... None
14928
+ qk_head_dim ..................................... 128
14929
+ qk_l2_norm ...................................... False
14930
+ qk_layernorm .................................... False
14931
+ qk_pos_emb_head_dim ............................. 64
14932
+ query_in_block_prob ............................. 0.1
14933
+ rampup_batch_size ............................... None
14934
+ rank ............................................ 0
14935
+ recompute_granularity ........................... None
14936
+ recompute_method ................................ None
14937
+ recompute_modules ............................... None
14938
+ recompute_num_layers ............................ None
14939
+ record_memory_history ........................... False
14940
+ relative_attention_max_distance ................. 128
14941
+ relative_attention_num_buckets .................. 32
14942
+ replication ..................................... False
14943
+ replication_factor .............................. 2
14944
+ replication_jump ................................ None
14945
+ rerun_mode ...................................... disabled
14946
+ reset_attention_mask ............................ False
14947
+ reset_position_ids .............................. False
14948
+ result_rejected_tracker_filename ................ None
14949
+ retriever_report_topk_accuracies ................ []
14950
+ retriever_score_scaling ......................... False
14951
+ retriever_seq_length ............................ 256
14952
+ retro_add_retriever ............................. False
14953
+ retro_attention_gate ............................ 1
14954
+ retro_cyclic_train_iters ........................ None
14955
+ retro_encoder_attention_dropout ................. 0.1
14956
+ retro_encoder_hidden_dropout .................... 0.1
14957
+ retro_encoder_layers ............................ 2
14958
+ retro_num_neighbors ............................. 2
14959
+ retro_num_retrieved_chunks ...................... 2
14960
+ retro_project_dir ............................... None
14961
+ retro_verify_neighbor_count ..................... True
14962
+ rope_scaling_factor ............................. 8.0
14963
+ rotary_base ..................................... 10000
14964
+ rotary_interleaved .............................. False
14965
+ rotary_percent .................................. 1.0
14966
+ rotary_scaling_factor ........................... 1.0
14967
+ rotary_seq_len_interpolation_factor ............. None
14968
+ run_workload_inspector_server ................... False
14969
+ sample_rate ..................................... 1.0
14970
+ save ............................................ gpt-checkpoint
14971
+ save_interval ................................... 16
14972
+ scatter_gather_tensors_in_pipeline .............. True
14973
+ seed ............................................ 1234
14974
+ seq_length ...................................... 65536
14975
+ sequence_parallel ............................... False
14976
+ sgd_momentum .................................... 0.9
14977
+ short_seq_prob .................................. 0.1
14978
+ skip_train ...................................... False
14979
+ skipped_train_samples ........................... 0
14980
+ spec ............................................ None
14981
+ split ........................................... None
14982
+ squared_relu .................................... False
14983
+ start_weight_decay .............................. 0.1
14984
+ straggler_ctrlr_port ............................ 65535
14985
+ straggler_minmax_count .......................... 1
14986
+ suggested_communication_unit_size ............... None
14987
+ swiglu .......................................... False
14988
+ swin_backbone_type .............................. tiny
14989
+ symmetric_ar_type ............................... None
14990
+ te_rng_tracker .................................. False
14991
+ tensor_model_parallel_size ...................... 8
14992
+ tensorboard_dir ................................. tensorboard-logs/
14993
+ tensorboard_log_interval ........................ 1
14994
+ tensorboard_queue_size .......................... 1000
14995
+ test_data_path .................................. None
14996
+ test_mode ....................................... False
14997
+ tiktoken_num_special_tokens ..................... 1000
14998
+ tiktoken_pattern ................................ None
14999
+ tiktoken_special_tokens ......................... None
15000
+ timing_log_level ................................ 0
15001
+ timing_log_option ............................... minmax
15002
+ titles_data_path ................................ None
15003
+ tokenizer_model ................................. None
15004
+ tokenizer_type .................................. GPT2BPETokenizer
15005
+ torch_fsdp2_reshard_after_forward ............... True
15006
+ tp_comm_bootstrap_backend ....................... nccl
15007
+ tp_comm_bulk_dgrad .............................. True
15008
+ tp_comm_bulk_wgrad .............................. True
15009
+ tp_comm_overlap ................................. False
15010
+ tp_comm_overlap_ag .............................. True
15011
+ tp_comm_overlap_cfg ............................. None
15012
+ tp_comm_overlap_rs .............................. True
15013
+ tp_comm_overlap_rs_dgrad ........................ False
15014
+ tp_comm_split_ag ................................ True
15015
+ tp_comm_split_rs ................................ True
15016
+ train_data_path ................................. None
15017
+ train_iters ..................................... 10
15018
+ train_samples ................................... None
15019
+ train_sync_interval ............................. None
15020
+ transformer_impl ................................ transformer_engine
15021
+ transformer_pipeline_model_parallel_size ........ 1
15022
+ untie_embeddings_and_output_weights ............. False
15023
+ use_checkpoint_args ............................. False
15024
+ use_checkpoint_opt_param_scheduler .............. False
15025
+ use_cpu_initialization .......................... None
15026
+ use_custom_fsdp ................................. False
15027
+ use_dist_ckpt ................................... True
15028
+ use_dist_ckpt_deprecated ........................ False
15029
+ use_distributed_optimizer ....................... False
15030
+ use_flash_attn .................................. False
15031
+ use_legacy_models ............................... False
15032
+ use_mp_args_from_checkpoint_args ................ False
15033
+ use_one_sent_docs ............................... False
15034
+ use_persistent_ckpt_worker ...................... False
15035
+ use_precision_aware_optimizer ................... False
15036
+ use_pytorch_profiler ............................ False
15037
+ use_ring_exchange_p2p ........................... False
15038
+ use_rope_scaling ................................ False
15039
+ use_rotary_position_embeddings .................. False
15040
+ use_sharp ....................................... False
15041
+ use_tokenizer_model_from_checkpoint_args ........ True
15042
+ use_torch_fsdp2 ................................. False
15043
+ use_torch_optimizer_for_cpu_offload ............. False
15044
+ use_tp_pp_dp_mapping ............................ False
15045
+ v_head_dim ...................................... 128
15046
+ valid_data_path ................................. None
15047
+ variable_seq_lengths ............................ False
15048
+ virtual_pipeline_model_parallel_size ............ None
15049
+ vision_backbone_type ............................ vit
15050
+ vision_pretraining .............................. False
15051
+ vision_pretraining_type ......................... classify
15052
+ vocab_extra_ids ................................. 0
15053
+ vocab_file ...................................... vocab.json
15054
+ vocab_size ...................................... None
15055
+ wandb_exp_name ..................................
15056
+ wandb_project ...................................
15057
+ wandb_save_dir ..................................
15058
+ weight_decay .................................... 0.1
15059
+ weight_decay_incr_style ......................... constant
15060
+ wgrad_deferral_limit ............................ 0
15061
+ world_size ...................................... 8
15062
+ yaml_cfg ........................................ None
15063
+ -------------------- end of arguments ---------------------
15064
+ INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1
15065
+ > building GPT2BPETokenizer tokenizer ...
15066
+ INFO:megatron.training.initialize:Setting logging level to 0
15067
+ INFO:megatron.training.initialize:Setting logging level to 0
15068
+ > padded vocab (size: 50257) with 943 dummy tokens (new size: 51200)
15069
+ INFO:megatron.training.initialize:Setting logging level to 0
15070
+ WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED
15071
+ > initializing torch distributed ...
15072
+ > initialized tensor model parallel with size 8
15073
+ > initialized pipeline model parallel with size 1
15074
+ > setting random seeds to 1234 ...
15075
+ > compiling dataset index builder ...
15076
+ INFO:megatron.training.initialize:Setting logging level to 0
15077
+ WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written.
15078
+ WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it
15079
+ INFO:megatron.training.initialize:Setting logging level to 0
15080
+ make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
15081
+ INFO:megatron.training.initialize:Setting logging level to 0
15082
+ make: Nothing to be done for 'default'.
15083
+ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
15084
+ >>> done with dataset index builder. Compilation time: 0.040 seconds
15085
+ WARNING: constraints for invoking optimized fused softmax kernel are not met. We default back to unfused kernel invocations.
15086
+ > compiling and loading fused kernels ...
15087
+ INFO:megatron.training.initialize:Setting logging level to 0
15088
+ >>> done with compiling and loading fused kernels. Compilation time: 2.541 seconds
15089
+ time to initialize megatron (seconds): 7.544
15090
+ [after megatron is initialized] datetime: 2025-06-21 21:34:06
15091
+ building GPT model ...
15092
+ >>> embedding
15093
+ >>> decoder
15094
+ >>> output_layer
15095
+ >>> embedding
15096
+ >>> decoder
15097
+ >>> output_layer
15098
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 338753024
15099
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 338753024
15100
+ >>> embedding
15101
+ >>> decoder
15102
+ >>> output_layer
15103
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 338753024
15104
+ >>> embedding
15105
+ >>> decoder
15106
+ >>> output_layer
15107
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 338753024
15108
+ >>> embedding
15109
+ >>> decoder
15110
+ >>> output_layer
15111
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 338753024
15112
+ >>> embedding
15113
+ >>> decoder
15114
+ >>> output_layer
15115
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 338753024
15116
+ >>> embedding
15117
+ >>> decoder
15118
+ >>> output_layer
15119
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 338753024
15120
+ >>> embedding
15121
+ >>> decoder
15122
+ >>> output_layer
15123
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 338753024
15124
+ INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False)
15125
+ INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1
15126
+ Params for bucket 1 (338753024 elements, 338753024 padded size):
15127
+ module.decoder.layers.1.mlp.linear_fc1.bias
15128
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias
15129
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight
15130
+ module.embedding.word_embeddings.weight
15131
+ module.decoder.final_layernorm.weight
15132
+ module.decoder.layers.1.self_attention.linear_qkv.weight
15133
+ module.decoder.layers.1.self_attention.linear_proj.weight
15134
+ module.decoder.layers.0.mlp.linear_fc2.bias
15135
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight
15136
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias
15137
+ module.decoder.layers.0.self_attention.linear_proj.bias
15138
+ module.decoder.layers.1.mlp.linear_fc2.weight
15139
+ module.decoder.layers.1.self_attention.linear_proj.bias
15140
+ module.decoder.layers.0.mlp.linear_fc1.weight
15141
+ module.embedding.position_embeddings.weight
15142
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias
15143
+ module.decoder.layers.0.self_attention.linear_qkv.weight
15144
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight
15145
+ module.decoder.layers.1.self_attention.linear_qkv.bias
15146
+ module.decoder.layers.1.mlp.linear_fc1.weight
15147
+ module.decoder.layers.0.mlp.linear_fc2.weight
15148
+ module.decoder.layers.0.mlp.linear_fc1.bias
15149
+ module.decoder.layers.1.mlp.linear_fc2.bias
15150
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight
15151
+ module.decoder.layers.0.self_attention.linear_qkv.bias
15152
+ module.decoder.final_layernorm.bias
15153
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias
15154
+ module.decoder.layers.0.self_attention.linear_proj.weight
15155
+ INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x1550a632e5a0>, config_logger_dir='')
15156
+ INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
15157
+ (TP, PP, encoder TP, encoder PP) mismatch after resume ((8, 1, 0, 0) vs (4, 1, 0, 0) from checkpoint): RNG state will be ignored
15158
+ (TP, PP, encoder TP, encoder PP) mismatch after resume ((8, 1, 0, 0) vs (4, 1, 0, 0) from checkpoint): Rerun state will be ignored
15159
+ loading distributed checkpoint from gpt-checkpoint at iteration 10
15160
+ Running ctx_length=81920, TP_SIZE=8, CP_SIZE=1, BATCH_SIZE=1
15161
+ Cleaning up checkpoint directory: gpt-checkpoint
15162
+ --------------------------------
15163
+ CTX_LENGTH: 81920
15164
+ TP_SIZE: 8
15165
+ CP_SIZE: 1
15166
+ CHECKPOINT_PATH: gpt-checkpoint
15167
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
15168
+ --------------------------------
15169
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
15170
+ INFO:megatron.training.initialize:Setting logging level to 0
15171
+ using world size: 8, data-parallel size: 1, context-parallel size: 1, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 8, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0
15172
+ Number of virtual stages per pipeline stage: None
15173
+ WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used
15174
+ using torch.float16 for parameters ...
15175
+ ------------------------ arguments ------------------------
15176
+ account_for_embedding_in_pipeline_split ......... False
15177
+ account_for_loss_in_pipeline_split .............. False
15178
+ accumulate_allreduce_grads_in_fp32 .............. False
15179
+ adam_beta1 ...................................... 0.9
15180
+ adam_beta2 ...................................... 0.999
15181
+ adam_eps ........................................ 1e-08
15182
+ add_bias_linear ................................. True
15183
+ add_position_embedding .......................... True
15184
+ add_qkv_bias .................................... True
15185
+ adlr_autoresume ................................. False
15186
+ adlr_autoresume_interval ........................ 1000
15187
+ align_grad_reduce ............................... True
15188
+ align_param_gather .............................. False
15189
+ app_tag_run_name ................................ None
15190
+ app_tag_run_version ............................. 0.0.0
15191
+ apply_layernorm_1p .............................. False
15192
+ apply_query_key_layer_scaling ................... False
15193
+ apply_residual_connection_post_layernorm ........ False
15194
+ apply_rope_fusion ............................... False
15195
+ async_save ...................................... None
15196
+ async_tensor_model_parallel_allreduce ........... True
15197
+ attention_backend ............................... AttnBackend.auto
15198
+ attention_dropout ............................... 0.1
15199
+ attention_softmax_in_fp32 ....................... False
15200
+ auto_detect_ckpt_format ......................... False
15201
+ barrier_with_L1_time ............................ True
15202
+ bert_binary_head ................................ True
15203
+ bert_embedder_type .............................. megatron
15204
+ bert_load ....................................... None
15205
+ bf16 ............................................ False
15206
+ bias_dropout_fusion ............................. True
15207
+ bias_gelu_fusion ................................ True
15208
+ bias_swiglu_fusion .............................. True
15209
+ biencoder_projection_dim ........................ 0
15210
+ biencoder_shared_query_context_model ............ False
15211
+ block_data_path ................................. None
15212
+ calc_ft_timeouts ................................ False
15213
+ calculate_per_token_loss ........................ False
15214
+ check_for_large_grads ........................... False
15215
+ check_for_nan_in_loss_and_grad .................. False
15216
+ check_for_spiky_loss ............................ False
15217
+ check_weight_hash_across_dp_replicas_interval ... None
15218
+ ckpt_assume_constant_structure .................. False
15219
+ ckpt_convert_format ............................. None
15220
+ ckpt_convert_save ............................... None
15221
+ ckpt_convert_update_legacy_dist_opt_format ...... False
15222
+ ckpt_format ..................................... torch_dist
15223
+ ckpt_fully_parallel_load ........................ False
15224
+ ckpt_fully_parallel_save ........................ True
15225
+ ckpt_fully_parallel_save_deprecated ............. False
15226
+ ckpt_step ....................................... None
15227
+ classes_fraction ................................ 1.0
15228
+ clip_grad ....................................... 1.0
15229
+ clone_scatter_output_in_embedding ............... True
15230
+ config_logger_dir ...............................
15231
+ consumed_train_samples .......................... 0
15232
+ consumed_valid_samples .......................... 0
15233
+ context_parallel_size ........................... 1
15234
+ cp_comm_type .................................... ['p2p']
15235
+ create_attention_mask_in_dataloader ............. True
15236
+ cross_entropy_fusion_impl ....................... native
15237
+ cross_entropy_loss_fusion ....................... False
15238
+ cuda_graph_scope ................................ full
15239
+ cuda_graph_warmup_steps ......................... 3
15240
+ data_args_path .................................. None
15241
+ data_cache_path ................................. None
15242
+ data_parallel_random_init ....................... False
15243
+ data_parallel_sharding_strategy ................. no_shard
15244
+ data_parallel_size .............................. 1
15245
+ data_path ....................................... None
15246
+ data_per_class_fraction ......................... 1.0
15247
+ data_sharding ................................... True
15248
+ dataloader_type ................................. single
15249
+ ddp_average_in_collective ....................... False
15250
+ ddp_bucket_size ................................. None
15251
+ ddp_num_buckets ................................. None
15252
+ ddp_pad_buckets_for_high_nccl_busbw ............. False
15253
+ decoder_first_pipeline_num_layers ............... None
15254
+ decoder_last_pipeline_num_layers ................ None
15255
+ decoder_num_layers .............................. None
15256
+ decoder_seq_length .............................. None
15257
+ decoupled_lr .................................... None
15258
+ decoupled_min_lr ................................ None
15259
+ decrease_batch_size_if_needed ................... False
15260
+ defer_embedding_wgrad_compute ................... False
15261
+ deprecated_use_mcore_models ..................... False
15262
+ deterministic_mode .............................. False
15263
+ dino_bottleneck_size ............................ 256
15264
+ dino_freeze_last_layer .......................... 1
15265
+ dino_head_hidden_size ........................... 2048
15266
+ dino_local_crops_number ......................... 10
15267
+ dino_local_img_size ............................. 96
15268
+ dino_norm_last_layer ............................ False
15269
+ dino_teacher_temp ............................... 0.07
15270
+ dino_warmup_teacher_temp ........................ 0.04
15271
+ dino_warmup_teacher_temp_epochs ................. 30
15272
+ disable_bf16_reduced_precision_matmul ........... False
15273
+ disable_mamba_mem_eff_path ...................... False
15274
+ disable_straggler_on_startup .................... False
15275
+ dist_ckpt_format_deprecated ..................... None
15276
+ dist_ckpt_strictness ............................ assume_ok_unexpected
15277
+ distribute_saved_activations .................... False
15278
+ distributed_backend ............................. nccl
15279
+ distributed_timeout_minutes ..................... 10
15280
+ embedding_path .................................. None
15281
+ empty_unused_memory_level ....................... 0
15282
+ enable_cuda_graph ............................... False
15283
+ enable_ft_package ............................... False
15284
+ enable_gloo_process_groups ...................... True
15285
+ enable_msc ...................................... True
15286
+ enable_one_logger ............................... True
15287
+ encoder_num_layers .............................. 2
15288
+ encoder_pipeline_model_parallel_size ............ 0
15289
+ encoder_seq_length .............................. 81920
15290
+ encoder_tensor_model_parallel_size .............. 0
15291
+ end_weight_decay ................................ 0.1
15292
+ eod_mask_loss ................................... False
15293
+ error_injection_rate ............................ 0
15294
+ error_injection_type ............................ transient_error
15295
+ eval_interval ................................... 16
15296
+ eval_iters ...................................... 1
15297
+ evidence_data_path .............................. None
15298
+ exit_duration_in_mins ........................... None
15299
+ exit_interval ................................... None
15300
+ exit_on_missing_checkpoint ...................... False
15301
+ exit_signal_handler ............................. False
15302
+ exp_avg_dtype ................................... torch.float32
15303
+ exp_avg_sq_dtype ................................ torch.float32
15304
+ expert_model_parallel_size ...................... 1
15305
+ expert_tensor_parallel_size ..................... 8
15306
+ external_cuda_graph ............................. False
15307
+ ffn_hidden_size ................................. 16384
15308
+ finetune ........................................ False
15309
+ first_last_layers_bf16 .......................... False
15310
+ flash_decode .................................... False
15311
+ fp16 ............................................ True
15312
+ fp16_lm_cross_entropy ........................... False
15313
+ fp32_residual_connection ........................ False
15314
+ fp8 ............................................. None
15315
+ fp8_amax_compute_algo ........................... most_recent
15316
+ fp8_amax_history_len ............................ 1
15317
+ fp8_interval .................................... 1
15318
+ fp8_margin ...................................... 0
15319
+ fp8_param_gather ................................ False
15320
+ fp8_recipe ...................................... delayed
15321
+ fp8_wgrad ....................................... True
15322
+ fsdp_double_buffer .............................. False
15323
+ global_batch_size ............................... 1
15324
+ grad_reduce_in_bf16 ............................. False
15325
+ gradient_accumulation_fusion .................... True
15326
+ gradient_reduce_div_fusion ...................... True
15327
+ group_query_attention ........................... True
15328
+ head_lr_mult .................................... 1.0
15329
+ heterogeneous_layers_config_encoded_json ........ None
15330
+ heterogeneous_layers_config_path ................ None
15331
+ hidden_dropout .................................. 0.1
15332
+ hidden_size ..................................... 4096
15333
+ hierarchical_context_parallel_sizes ............. None
15334
+ high_priority_stream_groups ..................... []
15335
+ hybrid_attention_ratio .......................... 0.0
15336
+ hybrid_mlp_ratio ................................ 0.0
15337
+ hybrid_override_pattern ......................... None
15338
+ hysteresis ...................................... 2
15339
+ ict_head_size ................................... None
15340
+ ict_load ........................................ None
15341
+ img_h ........................................... 224
15342
+ img_w ........................................... 224
15343
+ indexer_batch_size .............................. 128
15344
+ indexer_log_interval ............................ 1000
15345
+ inference_batch_times_seqlen_threshold .......... -1
15346
+ inference_dynamic_batching ...................... False
15347
+ inference_dynamic_batching_buffer_guaranteed_fraction 0.2
15348
+ inference_dynamic_batching_buffer_overflow_factor None
15349
+ inference_dynamic_batching_buffer_size_gb ....... 40.0
15350
+ inference_dynamic_batching_chunk_size ........... 256
15351
+ inference_dynamic_batching_max_requests_override None
15352
+ inference_dynamic_batching_max_tokens_override .. None
15353
+ inference_max_batch_size ........................ 8
15354
+ inference_max_seq_length ........................ 2560
15355
+ inference_rng_tracker ........................... False
15356
+ init_method_std ................................. 0.02
15357
+ init_method_xavier_uniform ...................... False
15358
+ init_model_with_meta_device ..................... False
15359
+ initial_loss_scale .............................. 4294967296
15360
+ inprocess_active_world_size ..................... 8
15361
+ inprocess_barrier_timeout ....................... 120
15362
+ inprocess_completion_timeout .................... 120
15363
+ inprocess_empty_cuda_cache ...................... False
15364
+ inprocess_granularity ........................... node
15365
+ inprocess_hard_timeout .......................... 90
15366
+ inprocess_heartbeat_interval .................... 30
15367
+ inprocess_heartbeat_timeout ..................... 60
15368
+ inprocess_last_call_wait ........................ 1
15369
+ inprocess_max_iterations ........................ None
15370
+ inprocess_monitor_process_interval .............. 1.0
15371
+ inprocess_monitor_thread_interval ............... 1.0
15372
+ inprocess_progress_watchdog_interval ............ 1.0
15373
+ inprocess_restart ............................... False
15374
+ inprocess_soft_timeout .......................... 60
15375
+ inprocess_termination_grace_time ................ 1
15376
+ is_hybrid_model ................................. False
15377
+ iter_per_epoch .................................. 1250
15378
+ iterations_to_skip .............................. []
15379
+ keep_fp8_transpose_cache_when_using_custom_fsdp . False
15380
+ kv_channels ..................................... 64
15381
+ kv_lora_rank .................................... 32
15382
+ lazy_mpu_init ................................... None
15383
+ load ............................................ gpt-checkpoint
15384
+ load_model_opt_format ........................... False
15385
+ local_rank ...................................... 0
15386
+ log_interval .................................... 1
15387
+ log_loss_scale_to_tensorboard ................... True
15388
+ log_memory_to_tensorboard ....................... False
15389
+ log_num_zeros_in_grad ........................... False
15390
+ log_params_norm ................................. False
15391
+ log_progress .................................... False
15392
+ log_straggler ................................... False
15393
+ log_throughput .................................. False
15394
+ log_timers_to_tensorboard ....................... False
15395
+ log_validation_ppl_to_tensorboard ............... False
15396
+ log_world_size_to_tensorboard ................... False
15397
+ logging_level ................................... 0
15398
+ loss_scale ...................................... None
15399
+ loss_scale_window ............................... 1000
15400
+ lr .............................................. 0.0005
15401
+ lr_decay_iters .................................. 150000
15402
+ lr_decay_samples ................................ None
15403
+ lr_decay_style .................................. cosine
15404
+ lr_warmup_fraction .............................. None
15405
+ lr_warmup_init .................................. 0.0
15406
+ lr_warmup_iters ................................. 2
15407
+ lr_warmup_samples ............................... 0
15408
+ lr_wsd_decay_iters .............................. None
15409
+ lr_wsd_decay_samples ............................ None
15410
+ lr_wsd_decay_style .............................. exponential
15411
+ main_grads_dtype ................................ torch.float32
15412
+ main_params_dtype ............................... torch.float32
15413
+ make_vocab_size_divisible_by .................... 128
15414
+ mamba_head_dim .................................. 64
15415
+ mamba_num_groups ................................ 8
15416
+ mamba_num_heads ................................. None
15417
+ mamba_state_dim ................................. 128
15418
+ manual_gc ....................................... False
15419
+ manual_gc_eval .................................. True
15420
+ manual_gc_interval .............................. 0
15421
+ mask_factor ..................................... 1.0
15422
+ mask_prob ....................................... 0.15
15423
+ mask_type ....................................... random
15424
+ masked_softmax_fusion ........................... True
15425
+ max_position_embeddings ......................... 81920
15426
+ max_tokens_to_oom ............................... 12000
15427
+ memory_snapshot_path ............................ snapshot.pickle
15428
+ merge_file ...................................... merges.txt
15429
+ micro_batch_size ................................ 1
15430
+ microbatch_group_size_per_vp_stage .............. None
15431
+ mid_level_dataset_surplus ....................... 0.005
15432
+ min_loss_scale .................................. 1.0
15433
+ min_lr .......................................... 0.0
15434
+ mlp_chunks_for_prefill .......................... 1
15435
+ mmap_bin_files .................................. True
15436
+ mock_data ....................................... True
15437
+ moe_apply_probs_on_input ........................ False
15438
+ moe_aux_loss_coeff .............................. 0.0
15439
+ moe_enable_deepep ............................... False
15440
+ moe_expert_capacity_factor ...................... None
15441
+ moe_extended_tp ................................. False
15442
+ moe_ffn_hidden_size ............................. None
15443
+ moe_grouped_gemm ................................ False
15444
+ moe_input_jitter_eps ............................ None
15445
+ moe_layer_freq .................................. 1
15446
+ moe_layer_recompute ............................. False
15447
+ moe_pad_expert_input_to_capacity ................ False
15448
+ moe_per_layer_logging ........................... False
15449
+ moe_permute_fusion .............................. False
15450
+ moe_router_bias_update_rate ..................... 0.001
15451
+ moe_router_dtype ................................ None
15452
+ moe_router_enable_expert_bias ................... False
15453
+ moe_router_force_load_balancing ................. False
15454
+ moe_router_group_topk ........................... None
15455
+ moe_router_load_balancing_type .................. aux_loss
15456
+ moe_router_num_groups ........................... None
15457
+ moe_router_padding_for_fp8 ...................... False
15458
+ moe_router_pre_softmax .......................... False
15459
+ moe_router_score_function ....................... softmax
15460
+ moe_router_topk ................................. 2
15461
+ moe_router_topk_scaling_factor .................. None
15462
+ moe_shared_expert_intermediate_size ............. None
15463
+ moe_shared_expert_overlap ....................... False
15464
+ moe_token_dispatcher_type ....................... allgather
15465
+ moe_token_drop_policy ........................... probs
15466
+ moe_use_legacy_grouped_gemm ..................... False
15467
+ moe_use_upcycling ............................... False
15468
+ moe_z_loss_coeff ................................ None
15469
+ mrope_section ................................... None
15470
+ mscale .......................................... 1.0
15471
+ mscale_all_dim .................................. 1.0
15472
+ mtp_loss_scaling_factor ......................... 0.1
15473
+ mtp_num_layers .................................. None
15474
+ multi_latent_attention .......................... False
15475
+ nccl_all_reduce_for_prefill ..................... False
15476
+ nccl_communicator_config_path ................... None
15477
+ nccl_ub ......................................... False
15478
+ no_load_optim ................................... None
15479
+ no_load_rng ..................................... None
15480
+ no_persist_layer_norm ........................... False
15481
+ no_rope_freq .................................... None
15482
+ no_save_optim ................................... None
15483
+ no_save_rng ..................................... None
15484
+ non_persistent_ckpt_type ........................ None
15485
+ non_persistent_global_ckpt_dir .................. None
15486
+ non_persistent_local_ckpt_algo .................. fully_parallel
15487
+ non_persistent_local_ckpt_dir ................... None
15488
+ non_persistent_save_interval .................... None
15489
+ norm_epsilon .................................... 1e-05
15490
+ normalization ................................... LayerNorm
15491
+ num_attention_heads ............................. 64
15492
+ num_channels .................................... 3
15493
+ num_classes ..................................... 1000
15494
+ num_dataset_builder_threads ..................... 1
15495
+ num_distributed_optimizer_instances ............. 1
15496
+ num_experts ..................................... None
15497
+ num_layers ...................................... 2
15498
+ num_layers_at_end_in_bf16 ....................... 1
15499
+ num_layers_at_start_in_bf16 ..................... 1
15500
+ num_layers_per_virtual_pipeline_stage ........... None
15501
+ num_query_groups ................................ 16
15502
+ num_virtual_stages_per_pipeline_rank ............ None
15503
+ num_workers ..................................... 2
15504
+ object_storage_cache_path ....................... None
15505
+ one_logger_async ................................ False
15506
+ one_logger_project .............................. megatron-lm
15507
+ one_logger_run_name ............................. None
15508
+ onnx_safe ....................................... None
15509
+ openai_gelu ..................................... False
15510
+ optimizer ....................................... adam
15511
+ optimizer_cpu_offload ........................... False
15512
+ optimizer_offload_fraction ...................... 1.0
15513
+ output_bert_embeddings .......................... False
15514
+ overlap_cpu_optimizer_d2h_h2d ................... False
15515
+ overlap_grad_reduce ............................. False
15516
+ overlap_p2p_comm ................................ False
15517
+ overlap_p2p_comm_warmup_flush ................... False
15518
+ overlap_param_gather ............................ False
15519
+ overlap_param_gather_with_optimizer_step ........ False
15520
+ override_opt_param_scheduler .................... False
15521
+ params_dtype .................................... torch.float16
15522
+ patch_dim ....................................... 16
15523
+ per_split_data_args_path ........................ None
15524
+ perform_initialization .......................... True
15525
+ pin_cpu_grads ................................... True
15526
+ pin_cpu_params .................................. True
15527
+ pipeline_model_parallel_comm_backend ............ None
15528
+ pipeline_model_parallel_size .................... 1
15529
+ pipeline_model_parallel_split_rank .............. None
15530
+ position_embedding_type ......................... learned_absolute
15531
+ pretrained_checkpoint ........................... None
15532
+ profile ......................................... False
15533
+ profile_ranks ................................... [0]
15534
+ profile_step_end ................................ 12
15535
+ profile_step_start .............................. 10
15536
+ q_lora_rank ..................................... None
15537
+ qk_head_dim ..................................... 128
15538
+ qk_l2_norm ...................................... False
15539
+ qk_layernorm .................................... False
15540
+ qk_pos_emb_head_dim ............................. 64
15541
+ query_in_block_prob ............................. 0.1
15542
+ rampup_batch_size ............................... None
15543
+ rank ............................................ 0
15544
+ recompute_granularity ........................... None
15545
+ recompute_method ................................ None
15546
+ recompute_modules ............................... None
15547
+ recompute_num_layers ............................ None
15548
+ record_memory_history ........................... False
15549
+ relative_attention_max_distance ................. 128
15550
+ relative_attention_num_buckets .................. 32
15551
+ replication ..................................... False
15552
+ replication_factor .............................. 2
15553
+ replication_jump ................................ None
15554
+ rerun_mode ...................................... disabled
15555
+ reset_attention_mask ............................ False
15556
+ reset_position_ids .............................. False
15557
+ result_rejected_tracker_filename ................ None
15558
+ retriever_report_topk_accuracies ................ []
15559
+ retriever_score_scaling ......................... False
15560
+ retriever_seq_length ............................ 256
15561
+ retro_add_retriever ............................. False
15562
+ retro_attention_gate ............................ 1
15563
+ retro_cyclic_train_iters ........................ None
15564
+ retro_encoder_attention_dropout ................. 0.1
15565
+ retro_encoder_hidden_dropout .................... 0.1
15566
+ retro_encoder_layers ............................ 2
15567
+ retro_num_neighbors ............................. 2
15568
+ retro_num_retrieved_chunks ...................... 2
15569
+ retro_project_dir ............................... None
15570
+ retro_verify_neighbor_count ..................... True
15571
+ rope_scaling_factor ............................. 8.0
15572
+ rotary_base ..................................... 10000
15573
+ rotary_interleaved .............................. False
15574
+ rotary_percent .................................. 1.0
15575
+ rotary_scaling_factor ........................... 1.0
15576
+ rotary_seq_len_interpolation_factor ............. None
15577
+ run_workload_inspector_server ................... False
15578
+ sample_rate ..................................... 1.0
15579
+ save ............................................ gpt-checkpoint
15580
+ save_interval ................................... 16
15581
+ scatter_gather_tensors_in_pipeline .............. True
15582
+ seed ............................................ 1234
15583
+ seq_length ...................................... 81920
15584
+ sequence_parallel ............................... False
15585
+ sgd_momentum .................................... 0.9
15586
+ short_seq_prob .................................. 0.1
15587
+ skip_train ...................................... False
15588
+ skipped_train_samples ........................... 0
15589
+ spec ............................................ None
15590
+ split ........................................... None
15591
+ squared_relu .................................... False
15592
+ start_weight_decay .............................. 0.1
15593
+ straggler_ctrlr_port ............................ 65535
15594
+ straggler_minmax_count .......................... 1
15595
+ suggested_communication_unit_size ............... None
15596
+ swiglu .......................................... False
15597
+ swin_backbone_type .............................. tiny
15598
+ symmetric_ar_type ............................... None
15599
+ te_rng_tracker .................................. False
15600
+ tensor_model_parallel_size ...................... 8
15601
+ tensorboard_dir ................................. tensorboard-logs/
15602
+ tensorboard_log_interval ........................ 1
15603
+ tensorboard_queue_size .......................... 1000
15604
+ test_data_path .................................. None
15605
+ test_mode ....................................... False
15606
+ tiktoken_num_special_tokens ..................... 1000
15607
+ tiktoken_pattern ................................ None
15608
+ tiktoken_special_tokens ......................... None
15609
+ timing_log_level ................................ 0
15610
+ timing_log_option ............................... minmax
15611
+ titles_data_path ................................ None
15612
+ tokenizer_model ................................. None
15613
+ tokenizer_type .................................. GPT2BPETokenizer
15614
+ torch_fsdp2_reshard_after_forward ............... True
15615
+ tp_comm_bootstrap_backend ....................... nccl
15616
+ tp_comm_bulk_dgrad .............................. True
15617
+ tp_comm_bulk_wgrad .............................. True
15618
+ tp_comm_overlap ................................. False
15619
+ tp_comm_overlap_ag .............................. True
15620
+ tp_comm_overlap_cfg ............................. None
15621
+ tp_comm_overlap_rs .............................. True
15622
+ tp_comm_overlap_rs_dgrad ........................ False
15623
+ tp_comm_split_ag ................................ True
15624
+ tp_comm_split_rs ................................ True
15625
+ train_data_path ................................. None
15626
+ train_iters ..................................... 10
15627
+ train_samples ................................... None
15628
+ train_sync_interval ............................. None
15629
+ transformer_impl ................................ transformer_engine
15630
+ transformer_pipeline_model_parallel_size ........ 1
15631
+ untie_embeddings_and_output_weights ............. False
15632
+ use_checkpoint_args ............................. False
15633
+ use_checkpoint_opt_param_scheduler .............. False
15634
+ use_cpu_initialization .......................... None
15635
+ use_custom_fsdp ................................. False
15636
+ use_dist_ckpt ................................... True
15637
+ use_dist_ckpt_deprecated ........................ False
15638
+ use_distributed_optimizer ....................... False
15639
+ use_flash_attn .................................. False
15640
+ use_legacy_models ............................... False
15641
+ use_mp_args_from_checkpoint_args ................ False
15642
+ use_one_sent_docs ............................... False
15643
+ use_persistent_ckpt_worker ...................... False
15644
+ use_precision_aware_optimizer ................... False
15645
+ use_pytorch_profiler ............................ False
15646
+ use_ring_exchange_p2p ........................... False
15647
+ use_rope_scaling ................................ False
15648
+ use_rotary_position_embeddings .................. False
15649
+ use_sharp ....................................... False
15650
+ use_tokenizer_model_from_checkpoint_args ........ True
15651
+ use_torch_fsdp2 ................................. False
15652
+ use_torch_optimizer_for_cpu_offload ............. False
15653
+ use_tp_pp_dp_mapping ............................ False
15654
+ v_head_dim ...................................... 128
15655
+ valid_data_path ................................. None
15656
+ variable_seq_lengths ............................ False
15657
+ virtual_pipeline_model_parallel_size ............ None
15658
+ vision_backbone_type ............................ vit
15659
+ vision_pretraining .............................. False
15660
+ vision_pretraining_type ......................... classify
15661
+ vocab_extra_ids ................................. 0
15662
+ vocab_file ...................................... vocab.json
15663
+ vocab_size ...................................... None
15664
+ wandb_exp_name ..................................
15665
+ wandb_project ...................................
15666
+ wandb_save_dir ..................................
15667
+ weight_decay .................................... 0.1
15668
+ weight_decay_incr_style ......................... constant
15669
+ wgrad_deferral_limit ............................ 0
15670
+ world_size ...................................... 8
15671
+ yaml_cfg ........................................ None
15672
+ -------------------- end of arguments ---------------------
15673
+ INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1
15674
+ > building GPT2BPETokenizer tokenizer ...
15675
+ > padded vocab (size: 50257) with 943 dummy tokens (new size: 51200)
15676
+ INFO:megatron.training.initialize:Setting logging level to 0
15677
+ WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED
15678
+ > initializing torch distributed ...
15679
+ INFO:megatron.training.initialize:Setting logging level to 0
15680
+ INFO:megatron.training.initialize:Setting logging level to 0
15681
+ > initialized tensor model parallel with size 8
15682
+ > initialized pipeline model parallel with size 1
15683
+ > setting random seeds to 1234 ...
15684
+ > compiling dataset index builder ...
15685
+ make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
15686
+ INFO:megatron.training.initialize:Setting logging level to 0
15687
+ INFO:megatron.training.initialize:Setting logging level to 0
15688
+ INFO:megatron.training.initialize:Setting logging level to 0
15689
+ WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written.
15690
+ WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it
15691
+ INFO:megatron.training.initialize:Setting logging level to 0
15692
+ make: Nothing to be done for 'default'.
15693
+ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
15694
+ >>> done with dataset index builder. Compilation time: 0.045 seconds
15695
+ WARNING: constraints for invoking optimized fused softmax kernel are not met. We default back to unfused kernel invocations.
15696
+ > compiling and loading fused kernels ...
15697
+ >>> done with compiling and loading fused kernels. Compilation time: 2.505 seconds
15698
+ time to initialize megatron (seconds): 7.777
15699
+ [after megatron is initialized] datetime: 2025-06-21 21:34:49
15700
+ building GPT model ...
15701
+ >>> embedding
15702
+ >>> decoder
15703
+ >>> output_layer
15704
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 405861888
15705
+ >>> embedding
15706
+ >>> decoder
15707
+ >>> output_layer
15708
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 405861888
15709
+ >>> embedding
15710
+ >>> decoder
15711
+ >>> output_layer
15712
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 405861888
15713
+ >>> embedding
15714
+ >>> decoder
15715
+ >>> output_layer
15716
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 405861888
15717
+ >>> embedding
15718
+ >>> decoder
15719
+ >>> output_layer
15720
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 405861888
15721
+ >>> embedding
15722
+ >>> decoder
15723
+ >>> output_layer
15724
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 405861888
15725
+ >>> embedding
15726
+ >>> decoder
15727
+ >>> output_layer
15728
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 405861888
15729
+ INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False)
15730
+ INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1
15731
+ Params for bucket 1 (405861888 elements, 405861888 padded size):
15732
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight
15733
+ module.decoder.layers.1.self_attention.linear_qkv.bias
15734
+ module.decoder.layers.0.self_attention.linear_proj.weight
15735
+ module.decoder.layers.1.mlp.linear_fc1.weight
15736
+ module.decoder.layers.0.mlp.linear_fc2.weight
15737
+ module.decoder.layers.0.mlp.linear_fc1.bias
15738
+ module.decoder.final_layernorm.bias
15739
+ module.decoder.layers.1.mlp.linear_fc2.bias
15740
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight
15741
+ module.decoder.layers.0.self_attention.linear_qkv.bias
15742
+ module.decoder.layers.0.self_attention.linear_proj.bias
15743
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias
15744
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight
15745
+ module.embedding.position_embeddings.weight
15746
+ module.decoder.layers.1.mlp.linear_fc1.bias
15747
+ module.decoder.final_layernorm.weight
15748
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias
15749
+ module.embedding.word_embeddings.weight
15750
+ module.decoder.layers.1.self_attention.linear_qkv.weight
15751
+ module.decoder.layers.1.self_attention.linear_proj.weight
15752
+ module.decoder.layers.0.mlp.linear_fc2.bias
15753
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight
15754
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias
15755
+ module.decoder.layers.1.mlp.linear_fc2.weight
15756
+ module.decoder.layers.1.self_attention.linear_proj.bias
15757
+ module.decoder.layers.0.mlp.linear_fc1.weight
15758
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias
15759
+ module.decoder.layers.0.self_attention.linear_qkv.weight
15760
+ INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x150e81b8e210>, config_logger_dir='')
15761
+ INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
15762
+ >>> embedding
15763
+ >>> decoder
15764
+ >>> output_layer
15765
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 405861888
15766
+ WARNING: could not find the metadata file gpt-checkpoint/latest_checkpointed_iteration.txt
15767
+ will not load any checkpoints and will start from random
15768
+ (min, max) time across ranks (ms):
15769
+ load-checkpoint ................................: (2.61, 3.66)
15770
+ [after model, optimizer, and learning rate scheduler are built] datetime: 2025-06-21 21:34:54
15771
+ > building train, validation, and test datasets ...
15772
+ > datasets target sizes (minimum size):
15773
+ train: 10
15774
+ validation: 1
15775
+ test: 1
15776
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let mock = True, as both blend and blend_per_split are None
15777
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split = 1,1,1, an arbitrarily even split, as mock is True
15778
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split_matrix = [(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)]
15779
+ > building train, validation, and test datasets for GPT ...
15780
+ INFO:megatron.core.datasets.blended_megatron_dataset_builder:Building MockGPTDataset splits with sizes=(10, 1, 1) and config=GPTDatasetConfig(random_seed=1234, sequence_length=81920, blend=None, blend_per_split=None, split='1,1,1', split_matrix=[(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)], num_dataset_builder_threads=1, path_to_cache=None, mmap_bin_files=True, mock=True, tokenizer=<megatron.training.tokenizer.tokenizer._GPT2BPETokenizer object at 0x150e82287bf0>, mid_level_dataset_surplus=0.005, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, create_attention_mask=True, drop_last_partial_validation_sequence=True, add_extra_token_to_sequence=True, object_storage_cache_path=None)
15781
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset train indices
15782
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
15783
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
15784
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.005018 seconds
15785
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 832
15786
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
15787
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset valid indices
15788
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
15789
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
15790
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001677 seconds
15791
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 832
15792
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
15793
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset test indices
15794
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
15795
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
15796
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001414 seconds
15797
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 833
15798
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
15799
+ > finished creating GPT datasets ...
15800
+ [after dataloaders are built] datetime: 2025-06-21 21:34:54
15801
+ done with setup ...
15802
+ (min, max) time across ranks (ms):
15803
+ model-and-optimizer-setup ......................: (4753.15, 4771.80)
15804
+ train/valid/test-data-iterators-setup ..........: (22.97, 115.52)
15805
+ training ...
15806
+ Setting rerun_state_machine.current_iteration to 0...
15807
+ [before the start of training step] datetime: 2025-06-21 21:34:54
15808
+ batch tensor: tokens torch.Size([1, 81920])
15809
+ batch tensor: labels torch.Size([1, 81920])
15810
+ batch tensor: loss_mask torch.Size([1, 81920])
15811
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
15812
+ batch tensor: position_ids torch.Size([1, 81920])
15813
+ batch tensor after cp: tokens torch.Size([1, 81920])
15814
+ batch tensor after cp: labels torch.Size([1, 81920])
15815
+ batch tensor after cp: loss_mask torch.Size([1, 81920])
15816
+ batch tensor after cp: attention_mask torch.Size([1, 1, 81920, 81920])
15817
+ batch tensor after cp: position_ids torch.Size([1, 81920])
15818
+ batch tensor: tokens torch.Size([1, 81920])
15819
+ batch tensor: labels torch.Size([1, 81920])
15820
+ batch tensor: loss_mask torch.Size([1, 81920])
15821
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
15822
+ batch tensor: position_ids torch.Size([1, 81920])
15823
+ batch tensor after cp: tokens torch.Size([1, 81920])
15824
+ batch tensor after cp: labels torch.Size([1, 81920])
15825
+ batch tensor after cp: loss_mask torch.Size([1, 81920])
15826
+ batch tensor after cp: attention_mask torch.Size([1, 1, 81920, 81920])
15827
+ batch tensor after cp: position_ids torch.Size([1, 81920])
15828
+ batch tensor: tokens torch.Size([1, 81920])
15829
+ batch tensor: labels torch.Size([1, 81920])
15830
+ batch tensor: loss_mask torch.Size([1, 81920])
15831
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
15832
+ batch tensor: position_ids torch.Size([1, 81920])
15833
+ batch tensor after cp: tokens torch.Size([1, 81920])
15834
+ batch tensor after cp: labels torch.Size([1, 81920])
15835
+ batch tensor after cp: loss_mask torch.Size([1, 81920])
15836
+ batch tensor after cp: attention_mask torch.Size([1, 1, 81920, 81920])
15837
+ batch tensor after cp: position_ids torch.Size([1, 81920])
15838
+ batch tensor: tokens torch.Size([1, 81920])
15839
+ batch tensor: labels torch.Size([1, 81920])
15840
+ batch tensor: loss_mask torch.Size([1, 81920])
15841
+ batch tensor: attention_mask torch.Size([1, 1, 81920, 81920])
15842
+ batch tensor: position_ids torch.Size([1, 81920])
15843
+ batch tensor after cp: tokens torch.Size([1, 81920])
15844
+ batch tensor after cp: labels torch.Size([1, 81920])
attnserver.run_attnserver.slurm.sh.343208.err.log CHANGED
@@ -2510,3 +2510,43 @@ W0621 21:33:53.354000 1714083 site-packages/torch/distributed/run.py:766]
2510
  W0621 21:33:53.354000 1714083 site-packages/torch/distributed/run.py:766] *****************************************
2511
  W0621 21:33:53.354000 1714083 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
2512
  W0621 21:33:53.354000 1714083 site-packages/torch/distributed/run.py:766] *****************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2510
  W0621 21:33:53.354000 1714083 site-packages/torch/distributed/run.py:766] *****************************************
2511
  W0621 21:33:53.354000 1714083 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
2512
  W0621 21:33:53.354000 1714083 site-packages/torch/distributed/run.py:766] *****************************************
2513
+ [rank0]:[W621 21:34:14.834919416 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2514
+ [rank5]:[W621 21:34:14.844636361 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2515
+ [rank4]:[W621 21:34:14.847352656 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2516
+ [rank2]:[W621 21:34:14.847397261 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2517
+ [rank3]:[W621 21:34:14.849657846 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2518
+ [rank1]:[W621 21:34:14.852460313 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2519
+ [rank6]:[W621 21:34:14.854328897 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2520
+ [rank7]:[W621 21:34:14.858873629 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2521
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2522
+ warnings.warn(
2523
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2524
+ warnings.warn(
2525
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2526
+ warnings.warn(
2527
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2528
+ warnings.warn(
2529
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2530
+ warnings.warn(
2531
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2532
+ warnings.warn(
2533
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2534
+ warnings.warn(
2535
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2536
+ warnings.warn(
2537
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2538
+ warnings.warn(
2539
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2540
+ warnings.warn(
2541
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2542
+ warnings.warn(
2543
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2544
+ warnings.warn(
2545
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2546
+ warnings.warn(
2547
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2548
+ warnings.warn(
2549
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2550
+ warnings.warn(
2551
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2552
+ warnings.warn(
attnserver.run_attnserver.slurm.sh.343208.out.log CHANGED
@@ -13370,3 +13370,737 @@ CHECKPOINT_PATH: gpt-checkpoint
13370
  PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
13371
  --------------------------------
13372
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13370
  PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
13371
  --------------------------------
13372
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
13373
+ using world size: 8, data-parallel size: 1, context-parallel size: 1, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 8, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0
13374
+ Number of virtual stages per pipeline stage: None
13375
+ WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used
13376
+ using torch.float16 for parameters ...
13377
+ ------------------------ arguments ------------------------
13378
+ account_for_embedding_in_pipeline_split ......... False
13379
+ account_for_loss_in_pipeline_split .............. False
13380
+ accumulate_allreduce_grads_in_fp32 .............. False
13381
+ adam_beta1 ...................................... 0.9
13382
+ adam_beta2 ...................................... 0.999
13383
+ adam_eps ........................................ 1e-08
13384
+ add_bias_linear ................................. True
13385
+ add_position_embedding .......................... True
13386
+ add_qkv_bias .................................... True
13387
+ adlr_autoresume ................................. False
13388
+ adlr_autoresume_interval ........................ 1000
13389
+ align_grad_reduce ............................... True
13390
+ align_param_gather .............................. False
13391
+ app_tag_run_name ................................ None
13392
+ app_tag_run_version ............................. 0.0.0
13393
+ apply_layernorm_1p .............................. False
13394
+ apply_query_key_layer_scaling ................... False
13395
+ apply_residual_connection_post_layernorm ........ False
13396
+ apply_rope_fusion ............................... False
13397
+ async_save ...................................... None
13398
+ async_tensor_model_parallel_allreduce ........... True
13399
+ attention_backend ............................... AttnBackend.auto
13400
+ attention_dropout ............................... 0.1
13401
+ attention_softmax_in_fp32 ....................... False
13402
+ auto_detect_ckpt_format ......................... False
13403
+ barrier_with_L1_time ............................ True
13404
+ bert_binary_head ................................ True
13405
+ bert_embedder_type .............................. megatron
13406
+ bert_load ....................................... None
13407
+ bf16 ............................................ False
13408
+ bias_dropout_fusion ............................. True
13409
+ bias_gelu_fusion ................................ True
13410
+ bias_swiglu_fusion .............................. True
13411
+ biencoder_projection_dim ........................ 0
13412
+ biencoder_shared_query_context_model ............ False
13413
+ block_data_path ................................. None
13414
+ calc_ft_timeouts ................................ False
13415
+ calculate_per_token_loss ........................ False
13416
+ check_for_large_grads ........................... False
13417
+ check_for_nan_in_loss_and_grad .................. False
13418
+ check_for_spiky_loss ............................ False
13419
+ check_weight_hash_across_dp_replicas_interval ... None
13420
+ ckpt_assume_constant_structure .................. False
13421
+ ckpt_convert_format ............................. None
13422
+ ckpt_convert_save ............................... None
13423
+ ckpt_convert_update_legacy_dist_opt_format ...... False
13424
+ ckpt_format ..................................... torch_dist
13425
+ ckpt_fully_parallel_load ........................ False
13426
+ ckpt_fully_parallel_save ........................ True
13427
+ ckpt_fully_parallel_save_deprecated ............. False
13428
+ ckpt_step ....................................... None
13429
+ classes_fraction ................................ 1.0
13430
+ clip_grad ....................................... 1.0
13431
+ clone_scatter_output_in_embedding ............... True
13432
+ config_logger_dir ...............................
13433
+ consumed_train_samples .......................... 0
13434
+ consumed_valid_samples .......................... 0
13435
+ context_parallel_size ........................... 1
13436
+ cp_comm_type .................................... ['p2p']
13437
+ create_attention_mask_in_dataloader ............. True
13438
+ cross_entropy_fusion_impl ....................... native
13439
+ cross_entropy_loss_fusion ....................... False
13440
+ cuda_graph_scope ................................ full
13441
+ cuda_graph_warmup_steps ......................... 3
13442
+ data_args_path .................................. None
13443
+ data_cache_path ................................. None
13444
+ data_parallel_random_init ....................... False
13445
+ data_parallel_sharding_strategy ................. no_shard
13446
+ data_parallel_size .............................. 1
13447
+ data_path ....................................... None
13448
+ data_per_class_fraction ......................... 1.0
13449
+ data_sharding ................................... True
13450
+ dataloader_type ................................. single
13451
+ ddp_average_in_collective ....................... False
13452
+ ddp_bucket_size ................................. None
13453
+ ddp_num_buckets ................................. None
13454
+ ddp_pad_buckets_for_high_nccl_busbw ............. False
13455
+ decoder_first_pipeline_num_layers ............... None
13456
+ decoder_last_pipeline_num_layers ................ None
13457
+ decoder_num_layers .............................. None
13458
+ decoder_seq_length .............................. None
13459
+ decoupled_lr .................................... None
13460
+ decoupled_min_lr ................................ None
13461
+ decrease_batch_size_if_needed ................... False
13462
+ defer_embedding_wgrad_compute ................... False
13463
+ deprecated_use_mcore_models ..................... False
13464
+ deterministic_mode .............................. False
13465
+ dino_bottleneck_size ............................ 256
13466
+ dino_freeze_last_layer .......................... 1
13467
+ dino_head_hidden_size ........................... 2048
13468
+ dino_local_crops_number ......................... 10
13469
+ dino_local_img_size ............................. 96
13470
+ dino_norm_last_layer ............................ False
13471
+ dino_teacher_temp ............................... 0.07
13472
+ dino_warmup_teacher_temp ........................ 0.04
13473
+ dino_warmup_teacher_temp_epochs ................. 30
13474
+ disable_bf16_reduced_precision_matmul ........... False
13475
+ disable_mamba_mem_eff_path ...................... False
13476
+ disable_straggler_on_startup .................... False
13477
+ dist_ckpt_format_deprecated ..................... None
13478
+ dist_ckpt_strictness ............................ assume_ok_unexpected
13479
+ distribute_saved_activations .................... False
13480
+ distributed_backend ............................. nccl
13481
+ distributed_timeout_minutes ..................... 10
13482
+ embedding_path .................................. None
13483
+ empty_unused_memory_level ....................... 0
13484
+ enable_cuda_graph ............................... False
13485
+ enable_ft_package ............................... False
13486
+ enable_gloo_process_groups ...................... True
13487
+ enable_msc ...................................... True
13488
+ enable_one_logger ............................... True
13489
+ encoder_num_layers .............................. 2
13490
+ encoder_pipeline_model_parallel_size ............ 0
13491
+ encoder_seq_length .............................. 49152
13492
+ encoder_tensor_model_parallel_size .............. 0
13493
+ end_weight_decay ................................ 0.1
13494
+ eod_mask_loss ................................... False
13495
+ error_injection_rate ............................ 0
13496
+ error_injection_type ............................ transient_error
13497
+ eval_interval ................................... 16
13498
+ eval_iters ...................................... 1
13499
+ evidence_data_path .............................. None
13500
+ exit_duration_in_mins ........................... None
13501
+ exit_interval ................................... None
13502
+ exit_on_missing_checkpoint ...................... False
13503
+ exit_signal_handler ............................. False
13504
+ exp_avg_dtype ................................... torch.float32
13505
+ exp_avg_sq_dtype ................................ torch.float32
13506
+ expert_model_parallel_size ...................... 1
13507
+ expert_tensor_parallel_size ..................... 8
13508
+ external_cuda_graph ............................. False
13509
+ ffn_hidden_size ................................. 16384
13510
+ finetune ........................................ False
13511
+ first_last_layers_bf16 .......................... False
13512
+ flash_decode .................................... False
13513
+ fp16 ............................................ True
13514
+ fp16_lm_cross_entropy ........................... False
13515
+ fp32_residual_connection ........................ False
13516
+ fp8 ............................................. None
13517
+ fp8_amax_compute_algo ........................... most_recent
13518
+ fp8_amax_history_len ............................ 1
13519
+ fp8_interval .................................... 1
13520
+ fp8_margin ...................................... 0
13521
+ fp8_param_gather ................................ False
13522
+ fp8_recipe ...................................... delayed
13523
+ fp8_wgrad ....................................... True
13524
+ fsdp_double_buffer .............................. False
13525
+ global_batch_size ............................... 1
13526
+ grad_reduce_in_bf16 ............................. False
13527
+ gradient_accumulation_fusion .................... True
13528
+ gradient_reduce_div_fusion ...................... True
13529
+ group_query_attention ........................... True
13530
+ head_lr_mult .................................... 1.0
13531
+ heterogeneous_layers_config_encoded_json ........ None
13532
+ heterogeneous_layers_config_path ................ None
13533
+ hidden_dropout .................................. 0.1
13534
+ hidden_size ..................................... 4096
13535
+ hierarchical_context_parallel_sizes ............. None
13536
+ high_priority_stream_groups ..................... []
13537
+ hybrid_attention_ratio .......................... 0.0
13538
+ hybrid_mlp_ratio ................................ 0.0
13539
+ hybrid_override_pattern ......................... None
13540
+ hysteresis ...................................... 2
13541
+ ict_head_size ................................... None
13542
+ ict_load ........................................ None
13543
+ img_h ........................................... 224
13544
+ img_w ........................................... 224
13545
+ indexer_batch_size .............................. 128
13546
+ indexer_log_interval ............................ 1000
13547
+ inference_batch_times_seqlen_threshold .......... -1
13548
+ inference_dynamic_batching ...................... False
13549
+ inference_dynamic_batching_buffer_guaranteed_fraction 0.2
13550
+ inference_dynamic_batching_buffer_overflow_factor None
13551
+ inference_dynamic_batching_buffer_size_gb ....... 40.0
13552
+ inference_dynamic_batching_chunk_size ........... 256
13553
+ inference_dynamic_batching_max_requests_override None
13554
+ inference_dynamic_batching_max_tokens_override .. None
13555
+ inference_max_batch_size ........................ 8
13556
+ inference_max_seq_length ........................ 2560
13557
+ inference_rng_tracker ........................... False
13558
+ init_method_std ................................. 0.02
13559
+ init_method_xavier_uniform ...................... False
13560
+ init_model_with_meta_device ..................... False
13561
+ initial_loss_scale .............................. 4294967296
13562
+ inprocess_active_world_size ..................... 8
13563
+ inprocess_barrier_timeout ....................... 120
13564
+ inprocess_completion_timeout .................... 120
13565
+ inprocess_empty_cuda_cache ...................... False
13566
+ inprocess_granularity ........................... node
13567
+ inprocess_hard_timeout .......................... 90
13568
+ inprocess_heartbeat_interval .................... 30
13569
+ inprocess_heartbeat_timeout ..................... 60
13570
+ inprocess_last_call_wait ........................ 1
13571
+ inprocess_max_iterations ........................ None
13572
+ inprocess_monitor_process_interval .............. 1.0
13573
+ inprocess_monitor_thread_interval ............... 1.0
13574
+ inprocess_progress_watchdog_interval ............ 1.0
13575
+ inprocess_restart ............................... False
13576
+ inprocess_soft_timeout .......................... 60
13577
+ inprocess_termination_grace_time ................ 1
13578
+ is_hybrid_model ................................. False
13579
+ iter_per_epoch .................................. 1250
13580
+ iterations_to_skip .............................. []
13581
+ keep_fp8_transpose_cache_when_using_custom_fsdp . False
13582
+ kv_channels ..................................... 64
13583
+ kv_lora_rank .................................... 32
13584
+ lazy_mpu_init ................................... None
13585
+ load ............................................ gpt-checkpoint
13586
+ load_model_opt_format ........................... False
13587
+ local_rank ...................................... 0
13588
+ log_interval .................................... 1
13589
+ log_loss_scale_to_tensorboard ................... True
13590
+ log_memory_to_tensorboard ....................... False
13591
+ log_num_zeros_in_grad ........................... False
13592
+ log_params_norm ................................. False
13593
+ log_progress .................................... False
13594
+ log_straggler ................................... False
13595
+ log_throughput .................................. False
13596
+ log_timers_to_tensorboard ....................... False
13597
+ log_validation_ppl_to_tensorboard ............... False
13598
+ log_world_size_to_tensorboard ................... False
13599
+ logging_level ................................... 0
13600
+ loss_scale ...................................... None
13601
+ loss_scale_window ............................... 1000
13602
+ lr .............................................. 0.0005
13603
+ lr_decay_iters .................................. 150000
13604
+ lr_decay_samples ................................ None
13605
+ lr_decay_style .................................. cosine
13606
+ lr_warmup_fraction .............................. None
13607
+ lr_warmup_init .................................. 0.0
13608
+ lr_warmup_iters ................................. 2
13609
+ lr_warmup_samples ............................... 0
13610
+ lr_wsd_decay_iters .............................. None
13611
+ lr_wsd_decay_samples ............................ None
13612
+ lr_wsd_decay_style .............................. exponential
13613
+ main_grads_dtype ................................ torch.float32
13614
+ main_params_dtype ............................... torch.float32
13615
+ make_vocab_size_divisible_by .................... 128
13616
+ mamba_head_dim .................................. 64
13617
+ mamba_num_groups ................................ 8
13618
+ mamba_num_heads ................................. None
13619
+ mamba_state_dim ................................. 128
13620
+ manual_gc ....................................... False
13621
+ manual_gc_eval .................................. True
13622
+ manual_gc_interval .............................. 0
13623
+ mask_factor ..................................... 1.0
13624
+ mask_prob ....................................... 0.15
13625
+ mask_type ....................................... random
13626
+ masked_softmax_fusion ........................... True
13627
+ max_position_embeddings ......................... 49152
13628
+ max_tokens_to_oom ............................... 12000
13629
+ memory_snapshot_path ............................ snapshot.pickle
13630
+ merge_file ...................................... merges.txt
13631
+ micro_batch_size ................................ 1
13632
+ microbatch_group_size_per_vp_stage .............. None
13633
+ mid_level_dataset_surplus ....................... 0.005
13634
+ min_loss_scale .................................. 1.0
13635
+ min_lr .......................................... 0.0
13636
+ mlp_chunks_for_prefill .......................... 1
13637
+ mmap_bin_files .................................. True
13638
+ mock_data ....................................... True
13639
+ moe_apply_probs_on_input ........................ False
13640
+ moe_aux_loss_coeff .............................. 0.0
13641
+ moe_enable_deepep ............................... False
13642
+ moe_expert_capacity_factor ...................... None
13643
+ moe_extended_tp ................................. False
13644
+ moe_ffn_hidden_size ............................. None
13645
+ moe_grouped_gemm ................................ False
13646
+ moe_input_jitter_eps ............................ None
13647
+ moe_layer_freq .................................. 1
13648
+ moe_layer_recompute ............................. False
13649
+ moe_pad_expert_input_to_capacity ................ False
13650
+ moe_per_layer_logging ........................... False
13651
+ moe_permute_fusion .............................. False
13652
+ moe_router_bias_update_rate ..................... 0.001
13653
+ moe_router_dtype ................................ None
13654
+ moe_router_enable_expert_bias ................... False
13655
+ moe_router_force_load_balancing ................. False
13656
+ moe_router_group_topk ........................... None
13657
+ moe_router_load_balancing_type .................. aux_loss
13658
+ moe_router_num_groups ........................... None
13659
+ moe_router_padding_for_fp8 ...................... False
13660
+ moe_router_pre_softmax .......................... False
13661
+ moe_router_score_function ....................... softmax
13662
+ moe_router_topk ................................. 2
13663
+ moe_router_topk_scaling_factor .................. None
13664
+ moe_shared_expert_intermediate_size ............. None
13665
+ moe_shared_expert_overlap ....................... False
13666
+ moe_token_dispatcher_type ....................... allgather
13667
+ moe_token_drop_policy ........................... probs
13668
+ moe_use_legacy_grouped_gemm ..................... False
13669
+ moe_use_upcycling ............................... False
13670
+ moe_z_loss_coeff ................................ None
13671
+ mrope_section ................................... None
13672
+ mscale .......................................... 1.0
13673
+ mscale_all_dim .................................. 1.0
13674
+ mtp_loss_scaling_factor ......................... 0.1
13675
+ mtp_num_layers .................................. None
13676
+ multi_latent_attention .......................... False
13677
+ nccl_all_reduce_for_prefill ..................... False
13678
+ nccl_communicator_config_path ................... None
13679
+ nccl_ub ......................................... False
13680
+ no_load_optim ................................... None
13681
+ no_load_rng ..................................... None
13682
+ no_persist_layer_norm ........................... False
13683
+ no_rope_freq .................................... None
13684
+ no_save_optim ................................... None
13685
+ no_save_rng ..................................... None
13686
+ non_persistent_ckpt_type ........................ None
13687
+ non_persistent_global_ckpt_dir .................. None
13688
+ non_persistent_local_ckpt_algo .................. fully_parallel
13689
+ non_persistent_local_ckpt_dir ................... None
13690
+ non_persistent_save_interval .................... None
13691
+ norm_epsilon .................................... 1e-05
13692
+ normalization ................................... LayerNorm
13693
+ num_attention_heads ............................. 64
13694
+ num_channels .................................... 3
13695
+ num_classes ..................................... 1000
13696
+ num_dataset_builder_threads ..................... 1
13697
+ num_distributed_optimizer_instances ............. 1
13698
+ num_experts ..................................... None
13699
+ num_layers ...................................... 2
13700
+ num_layers_at_end_in_bf16 ....................... 1
13701
+ num_layers_at_start_in_bf16 ..................... 1
13702
+ num_layers_per_virtual_pipeline_stage ........... None
13703
+ num_query_groups ................................ 16
13704
+ num_virtual_stages_per_pipeline_rank ............ None
13705
+ num_workers ..................................... 2
13706
+ object_storage_cache_path ....................... None
13707
+ one_logger_async ................................ False
13708
+ one_logger_project .............................. megatron-lm
13709
+ one_logger_run_name ............................. None
13710
+ onnx_safe ....................................... None
13711
+ openai_gelu ..................................... False
13712
+ optimizer ....................................... adam
13713
+ optimizer_cpu_offload ........................... False
13714
+ optimizer_offload_fraction ...................... 1.0
13715
+ output_bert_embeddings .......................... False
13716
+ overlap_cpu_optimizer_d2h_h2d ................... False
13717
+ overlap_grad_reduce ............................. False
13718
+ overlap_p2p_comm ................................ False
13719
+ overlap_p2p_comm_warmup_flush ................... False
13720
+ overlap_param_gather ............................ False
13721
+ overlap_param_gather_with_optimizer_step ........ False
13722
+ override_opt_param_scheduler .................... False
13723
+ params_dtype .................................... torch.float16
13724
+ patch_dim ....................................... 16
13725
+ per_split_data_args_path ........................ None
13726
+ perform_initialization .......................... True
13727
+ pin_cpu_grads ................................... True
13728
+ pin_cpu_params .................................. True
13729
+ pipeline_model_parallel_comm_backend ............ None
13730
+ pipeline_model_parallel_size .................... 1
13731
+ pipeline_model_parallel_split_rank .............. None
13732
+ position_embedding_type ......................... learned_absolute
13733
+ pretrained_checkpoint ........................... None
13734
+ profile ......................................... False
13735
+ profile_ranks ................................... [0]
13736
+ profile_step_end ................................ 12
13737
+ profile_step_start .............................. 10
13738
+ q_lora_rank ..................................... None
13739
+ qk_head_dim ..................................... 128
13740
+ qk_l2_norm ...................................... False
13741
+ qk_layernorm .................................... False
13742
+ qk_pos_emb_head_dim ............................. 64
13743
+ query_in_block_prob ............................. 0.1
13744
+ rampup_batch_size ............................... None
13745
+ rank ............................................ 0
13746
+ recompute_granularity ........................... None
13747
+ recompute_method ................................ None
13748
+ recompute_modules ............................... None
13749
+ recompute_num_layers ............................ None
13750
+ record_memory_history ........................... False
13751
+ relative_attention_max_distance ................. 128
13752
+ relative_attention_num_buckets .................. 32
13753
+ replication ..................................... False
13754
+ replication_factor .............................. 2
13755
+ replication_jump ................................ None
13756
+ rerun_mode ...................................... disabled
13757
+ reset_attention_mask ............................ False
13758
+ reset_position_ids .............................. False
13759
+ result_rejected_tracker_filename ................ None
13760
+ retriever_report_topk_accuracies ................ []
13761
+ retriever_score_scaling ......................... False
13762
+ retriever_seq_length ............................ 256
13763
+ retro_add_retriever ............................. False
13764
+ retro_attention_gate ............................ 1
13765
+ retro_cyclic_train_iters ........................ None
13766
+ retro_encoder_attention_dropout ................. 0.1
13767
+ retro_encoder_hidden_dropout .................... 0.1
13768
+ retro_encoder_layers ............................ 2
13769
+ retro_num_neighbors ............................. 2
13770
+ retro_num_retrieved_chunks ...................... 2
13771
+ retro_project_dir ............................... None
13772
+ retro_verify_neighbor_count ..................... True
13773
+ rope_scaling_factor ............................. 8.0
13774
+ rotary_base ..................................... 10000
13775
+ rotary_interleaved .............................. False
13776
+ rotary_percent .................................. 1.0
13777
+ rotary_scaling_factor ........................... 1.0
13778
+ rotary_seq_len_interpolation_factor ............. None
13779
+ run_workload_inspector_server ................... False
13780
+ sample_rate ..................................... 1.0
13781
+ save ............................................ gpt-checkpoint
13782
+ save_interval ................................... 16
13783
+ scatter_gather_tensors_in_pipeline .............. True
13784
+ seed ............................................ 1234
13785
+ seq_length ...................................... 49152
13786
+ sequence_parallel ............................... False
13787
+ sgd_momentum .................................... 0.9
13788
+ short_seq_prob .................................. 0.1
13789
+ skip_train ...................................... False
13790
+ skipped_train_samples ........................... 0
13791
+ spec ............................................ None
13792
+ split ........................................... None
13793
+ squared_relu .................................... False
13794
+ start_weight_decay .............................. 0.1
13795
+ straggler_ctrlr_port ............................ 65535
13796
+ straggler_minmax_count .......................... 1
13797
+ suggested_communication_unit_size ............... None
13798
+ swiglu .......................................... False
13799
+ swin_backbone_type .............................. tiny
13800
+ symmetric_ar_type ............................... None
13801
+ te_rng_tracker .................................. False
13802
+ tensor_model_parallel_size ...................... 8
13803
+ tensorboard_dir ................................. tensorboard-logs/
13804
+ tensorboard_log_interval ........................ 1
13805
+ tensorboard_queue_size .......................... 1000
13806
+ test_data_path .................................. None
13807
+ test_mode ....................................... False
13808
+ tiktoken_num_special_tokens ..................... 1000
13809
+ tiktoken_pattern ................................ None
13810
+ tiktoken_special_tokens ......................... None
13811
+ timing_log_level ................................ 0
13812
+ timing_log_option ............................... minmax
13813
+ titles_data_path ................................ None
13814
+ tokenizer_model ................................. None
13815
+ tokenizer_type .................................. GPT2BPETokenizer
13816
+ torch_fsdp2_reshard_after_forward ............... True
13817
+ tp_comm_bootstrap_backend ....................... nccl
13818
+ tp_comm_bulk_dgrad .............................. True
13819
+ tp_comm_bulk_wgrad .............................. True
13820
+ tp_comm_overlap ................................. False
13821
+ tp_comm_overlap_ag .............................. True
13822
+ tp_comm_overlap_cfg ............................. None
13823
+ tp_comm_overlap_rs .............................. True
13824
+ tp_comm_overlap_rs_dgrad ........................ False
13825
+ tp_comm_split_ag ................................ True
13826
+ tp_comm_split_rs ................................ True
13827
+ train_data_path ................................. None
13828
+ train_iters ..................................... 10
13829
+ train_samples ................................... None
13830
+ train_sync_interval ............................. None
13831
+ transformer_impl ................................ transformer_engine
13832
+ transformer_pipeline_model_parallel_size ........ 1
13833
+ untie_embeddings_and_output_weights ............. False
13834
+ use_checkpoint_args ............................. False
13835
+ use_checkpoint_opt_param_scheduler .............. False
13836
+ use_cpu_initialization .......................... None
13837
+ use_custom_fsdp ................................. False
13838
+ use_dist_ckpt ................................... True
13839
+ use_dist_ckpt_deprecated ........................ False
13840
+ use_distributed_optimizer ....................... False
13841
+ use_flash_attn .................................. False
13842
+ use_legacy_models ............................... False
13843
+ use_mp_args_from_checkpoint_args ................ False
13844
+ use_one_sent_docs ............................... False
13845
+ use_persistent_ckpt_worker ...................... False
13846
+ use_precision_aware_optimizer ................... False
13847
+ use_pytorch_profiler ............................ False
13848
+ use_ring_exchange_p2p ........................... False
13849
+ use_rope_scaling ................................ False
13850
+ use_rotary_position_embeddings .................. False
13851
+ use_sharp ....................................... False
13852
+ use_tokenizer_model_from_checkpoint_args ........ True
13853
+ use_torch_fsdp2 ................................. False
13854
+ use_torch_optimizer_for_cpu_offload ............. False
13855
+ use_tp_pp_dp_mapping ............................ False
13856
+ v_head_dim ...................................... 128
13857
+ valid_data_path ................................. None
13858
+ variable_seq_lengths ............................ False
13859
+ virtual_pipeline_model_parallel_size ............ None
13860
+ vision_backbone_type ............................ vit
13861
+ vision_pretraining .............................. False
13862
+ vision_pretraining_type ......................... classify
13863
+ vocab_extra_ids ................................. 0
13864
+ vocab_file ...................................... vocab.json
13865
+ vocab_size ...................................... None
13866
+ wandb_exp_name ..................................
13867
+ wandb_project ...................................
13868
+ wandb_save_dir ..................................
13869
+ weight_decay .................................... 0.1
13870
+ weight_decay_incr_style ......................... constant
13871
+ wgrad_deferral_limit ............................ 0
13872
+ world_size ...................................... 8
13873
+ yaml_cfg ........................................ None
13874
+ -------------------- end of arguments ---------------------
13875
+ INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1
13876
+ > building GPT2BPETokenizer tokenizer ...
13877
+ INFO:megatron.training.initialize:Setting logging level to 0
13878
+ WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written.
13879
+ WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it
13880
+ INFO:megatron.training.initialize:Setting logging level to 0
13881
+ > padded vocab (size: 50257) with 943 dummy tokens (new size: 51200)
13882
+ INFO:megatron.training.initialize:Setting logging level to 0
13883
+ WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED
13884
+ > initializing torch distributed ...
13885
+ INFO:megatron.training.initialize:Setting logging level to 0
13886
+ INFO:megatron.training.initialize:Setting logging level to 0
13887
+ INFO:megatron.training.initialize:Setting logging level to 0
13888
+ > initialized tensor model parallel with size 8
13889
+ > initialized pipeline model parallel with size 1
13890
+ > setting random seeds to 1234 ...
13891
+ > compiling dataset index builder ...
13892
+ INFO:megatron.training.initialize:Setting logging level to 0
13893
+ make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
13894
+ INFO:megatron.training.initialize:Setting logging level to 0
13895
+ make: Nothing to be done for 'default'.
13896
+ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
13897
+ >>> done with dataset index builder. Compilation time: 0.042 seconds
13898
+ WARNING: constraints for invoking optimized fused softmax kernel are not met. We default back to unfused kernel invocations.
13899
+ > compiling and loading fused kernels ...
13900
+ >>> done with compiling and loading fused kernels. Compilation time: 2.666 seconds
13901
+ time to initialize megatron (seconds): 7.383
13902
+ [after megatron is initialized] datetime: 2025-06-21 21:34:21
13903
+ building GPT model ...
13904
+ >>> embedding
13905
+ >>> decoder
13906
+ >>> output_layer
13907
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 271644160
13908
+ >>> embedding
13909
+ >>> decoder
13910
+ >>> output_layer
13911
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 271644160
13912
+ >>> embedding
13913
+ >>> decoder
13914
+ >>> output_layer
13915
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 271644160
13916
+ >>> embedding
13917
+ >>> decoder
13918
+ >>> output_layer
13919
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 271644160
13920
+ >>> embedding
13921
+ >>> decoder
13922
+ >>> output_layer
13923
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 271644160
13924
+ >>> embedding
13925
+ >>> decoder
13926
+ >>> output_layer
13927
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 271644160
13928
+ >>> embedding
13929
+ >>> decoder
13930
+ >>> output_layer
13931
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 271644160
13932
+ >>> embedding
13933
+ >>> decoder
13934
+ >>> output_layer
13935
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 271644160
13936
+ INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False)
13937
+ INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1
13938
+ Params for bucket 1 (271644160 elements, 271644160 padded size):
13939
+ module.decoder.final_layernorm.bias
13940
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias
13941
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias
13942
+ module.decoder.layers.1.mlp.linear_fc1.bias
13943
+ module.decoder.layers.0.mlp.linear_fc1.bias
13944
+ module.decoder.final_layernorm.weight
13945
+ module.decoder.layers.1.self_attention.linear_qkv.weight
13946
+ module.decoder.layers.1.self_attention.linear_proj.weight
13947
+ module.decoder.layers.0.self_attention.linear_qkv.weight
13948
+ module.decoder.layers.0.self_attention.linear_proj.weight
13949
+ module.decoder.layers.1.mlp.linear_fc2.weight
13950
+ module.decoder.layers.1.self_attention.linear_proj.bias
13951
+ module.decoder.layers.0.self_attention.linear_proj.bias
13952
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias
13953
+ module.decoder.layers.0.mlp.linear_fc2.weight
13954
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias
13955
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight
13956
+ module.decoder.layers.1.self_attention.linear_qkv.bias
13957
+ module.decoder.layers.0.mlp.linear_fc2.bias
13958
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight
13959
+ module.decoder.layers.0.self_attention.linear_qkv.bias
13960
+ module.embedding.position_embeddings.weight
13961
+ module.decoder.layers.1.mlp.linear_fc1.weight
13962
+ module.decoder.layers.0.mlp.linear_fc1.weight
13963
+ module.decoder.layers.1.mlp.linear_fc2.bias
13964
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight
13965
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight
13966
+ module.embedding.word_embeddings.weight
13967
+ INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x14f23638e6f0>, config_logger_dir='')
13968
+ INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
13969
+ WARNING: could not find the metadata file gpt-checkpoint/latest_checkpointed_iteration.txt
13970
+ will not load any checkpoints and will start from random
13971
+ (min, max) time across ranks (ms):
13972
+ load-checkpoint ................................: (14.15, 14.46)
13973
+ [after model, optimizer, and learning rate scheduler are built] datetime: 2025-06-21 21:34:23
13974
+ > building train, validation, and test datasets ...
13975
+ > datasets target sizes (minimum size):
13976
+ train: 10
13977
+ validation: 1
13978
+ test: 1
13979
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let mock = True, as both blend and blend_per_split are None
13980
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split = 1,1,1, an arbitrarily even split, as mock is True
13981
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split_matrix = [(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)]
13982
+ > building train, validation, and test datasets for GPT ...
13983
+ INFO:megatron.core.datasets.blended_megatron_dataset_builder:Building MockGPTDataset splits with sizes=(10, 1, 1) and config=GPTDatasetConfig(random_seed=1234, sequence_length=49152, blend=None, blend_per_split=None, split='1,1,1', split_matrix=[(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)], num_dataset_builder_threads=1, path_to_cache=None, mmap_bin_files=True, mock=True, tokenizer=<megatron.training.tokenizer.tokenizer._GPT2BPETokenizer object at 0x14f23644bd40>, mid_level_dataset_surplus=0.005, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, create_attention_mask=True, drop_last_partial_validation_sequence=True, add_extra_token_to_sequence=True, object_storage_cache_path=None)
13984
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset train indices
13985
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
13986
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
13987
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.005095 seconds
13988
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 1387
13989
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
13990
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset valid indices
13991
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
13992
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
13993
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001743 seconds
13994
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 1386
13995
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
13996
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset test indices
13997
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
13998
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
13999
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001374 seconds
14000
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 1389
14001
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
14002
+ > finished creating GPT datasets ...
14003
+ [after dataloaders are built] datetime: 2025-06-21 21:34:23
14004
+ done with setup ...
14005
+ (min, max) time across ranks (ms):
14006
+ model-and-optimizer-setup ......................: (2174.05, 2191.01)
14007
+ train/valid/test-data-iterators-setup ..........: (29.93, 118.73)
14008
+ training ...
14009
+ Setting rerun_state_machine.current_iteration to 0...
14010
+ [before the start of training step] datetime: 2025-06-21 21:34:23
14011
+ batch tensor: tokens torch.Size([2, 98304])
14012
+ batch tensor: labels torch.Size([2, 98304])
14013
+ batch tensor: loss_mask torch.Size([2, 98304])
14014
+ batch tensor: attention_mask torch.Size([2, 1, 98304, 98304])
14015
+ batch tensor: position_ids torch.Size([2, 98304])
14016
+ batch tensor after cp: tokens torch.Size([2, 98304])
14017
+ batch tensor after cp: labels torch.Size([2, 98304])
14018
+ batch tensor after cp: loss_mask torch.Size([2, 98304])
14019
+ batch tensor after cp: attention_mask torch.Size([2, 1, 98304, 98304])
14020
+ batch tensor after cp: position_ids torch.Size([2, 98304])
14021
+ batch tensor: tokens torch.Size([2, 98304])
14022
+ batch tensor: labels torch.Size([2, 98304])
14023
+ batch tensor: loss_mask torch.Size([2, 98304])
14024
+ batch tensor: attention_mask torch.Size([2, 1, 98304, 98304])
14025
+ batch tensor: position_ids torch.Size([2, 98304])
14026
+ batch tensor after cp: tokens torch.Size([2, 98304])
14027
+ batch tensor after cp: labels torch.Size([2, 98304])
14028
+ batch tensor after cp: loss_mask torch.Size([2, 98304])
14029
+ batch tensor after cp: attention_mask torch.Size([2, 1, 98304, 98304])
14030
+ batch tensor after cp: position_ids torch.Size([2, 98304])
14031
+ batch tensor: tokens torch.Size([2, 98304])
14032
+ batch tensor: labels torch.Size([2, 98304])
14033
+ batch tensor: loss_mask torch.Size([2, 98304])
14034
+ batch tensor: attention_mask torch.Size([2, 1, 98304, 98304])
14035
+ batch tensor: position_ids torch.Size([2, 98304])
14036
+ batch tensor after cp: tokens torch.Size([2, 98304])
14037
+ batch tensor after cp: labels torch.Size([2, 98304])
14038
+ batch tensor after cp: loss_mask torch.Size([2, 98304])
14039
+ batch tensor after cp: attention_mask torch.Size([2, 1, 98304, 98304])
14040
+ batch tensor after cp: position_ids torch.Size([2, 98304])
14041
+ batch tensor: tokens torch.Size([2, 98304])
14042
+ batch tensor: labels torch.Size([2, 98304])
14043
+ batch tensor: loss_mask torch.Size([2, 98304])
14044
+ batch tensor: attention_mask torch.Size([2, 1, 98304, 98304])
14045
+ batch tensor: position_ids torch.Size([2, 98304])
14046
+ batch tensor after cp: tokens torch.Size([2, 98304])
14047
+ batch tensor after cp: labels torch.Size([2, 98304])
14048
+ batch tensor after cp: loss_mask torch.Size([2, 98304])
14049
+ batch tensor after cp: attention_mask torch.Size([2, 1, 98304, 98304])
14050
+ batch tensor after cp: position_ids torch.Size([2, 98304])
14051
+ batch tensor: tokens torch.Size([2, 98304])
14052
+ batch tensor: labels torch.Size([2, 98304])
14053
+ batch tensor: loss_mask torch.Size([2, 98304])
14054
+ batch tensor: attention_mask torch.Size([2, 1, 98304, 98304])
14055
+ batch tensor: position_ids torch.Size([2, 98304])
14056
+ batch tensor after cp: tokens torch.Size([2, 98304])
14057
+ batch tensor after cp: labels torch.Size([2, 98304])
14058
+ batch tensor after cp: loss_mask torch.Size([2, 98304])
14059
+ batch tensor after cp: attention_mask torch.Size([2, 1, 98304, 98304])
14060
+ batch tensor after cp: position_ids torch.Size([2, 98304])
14061
+ batch tensor: tokens torch.Size([2, 98304])
14062
+ batch tensor: labels torch.Size([2, 98304])
14063
+ batch tensor: loss_mask torch.Size([2, 98304])
14064
+ batch tensor: attention_mask torch.Size([2, 1, 98304, 98304])
14065
+ batch tensor: position_ids torch.Size([2, 98304])
14066
+ batch tensor after cp: tokens torch.Size([2, 98304])
14067
+ batch tensor after cp: labels torch.Size([2, 98304])
14068
+ batch tensor after cp: loss_mask torch.Size([2, 98304])
14069
+ batch tensor after cp: attention_mask torch.Size([2, 1, 98304, 98304])
14070
+ batch tensor after cp: position_ids torch.Size([2, 98304])
14071
+ batch tensor: tokens torch.Size([2, 98304])
14072
+ batch tensor: labels torch.Size([2, 98304])
14073
+ batch tensor: loss_mask torch.Size([2, 98304])
14074
+ batch tensor: attention_mask torch.Size([2, 1, 98304, 98304])
14075
+ batch tensor: position_ids torch.Size([2, 98304])
14076
+ batch tensor after cp: tokens torch.Size([2, 98304])
14077
+ batch tensor after cp: labels torch.Size([2, 98304])
14078
+ batch tensor after cp: loss_mask torch.Size([2, 98304])
14079
+ batch tensor after cp: attention_mask torch.Size([2, 1, 98304, 98304])
14080
+ batch tensor after cp: position_ids torch.Size([2, 98304])
14081
+ batch tensor: tokens torch.Size([2, 98304])
14082
+ batch tensor: labels torch.Size([2, 98304])
14083
+ batch tensor: loss_mask torch.Size([2, 98304])
14084
+ batch tensor: attention_mask torch.Size([2, 1, 98304, 98304])
14085
+ batch tensor: position_ids torch.Size([2, 98304])
14086
+ batch tensor after cp: tokens torch.Size([2, 98304])
14087
+ batch tensor after cp: labels torch.Size([2, 98304])
14088
+ batch tensor after cp: loss_mask torch.Size([2, 98304])
14089
+ batch tensor after cp: attention_mask torch.Size([2, 1, 98304, 98304])
14090
+ batch tensor after cp: position_ids torch.Size([2, 98304])
14091
+ Start exporting trace 0
14092
+ Done exporting trace 0
14093
+ [2025-06-21 21:34:59] iteration 1/ 10 | consumed samples: 1 | elapsed time per iteration (ms): 35801.9 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 4294967296.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
14094
+ Number of parameters in transformer block in billions: 0.35
14095
+ Number of parameters in embedding layers in billions: 0.21
14096
+ Total number of parameters in billions: 0.56
14097
+ Number of parameters in most loaded shard in billions: 0.0703
14098
+ Theoretical memory footprints: weight and optimizer=1206.09 MB
14099
+ [Rank 1] (after 1 iterations) memory (MB) | allocated: 21684.97607421875 | max allocated: 51035.55419921875 | reserved: 55928.0 | max reserved: 55928.0
14100
+ [Rank 6] (after 1 iterations) memory (MB) | allocated: 21684.97607421875 | max allocated: 51035.55419921875 | reserved: 55928.0 | max reserved: 55928.0
14101
+ [Rank 7] (after 1 iterations) memory (MB) | allocated: 21684.97607421875 | max allocated: 51035.55419921875 | reserved: 55928.0 | max reserved: 55928.0
14102
+ [Rank 3] (after 1 iterations) memory (MB) | allocated: 21684.97607421875 | max allocated: 51035.55419921875 | reserved: 55928.0 | max reserved: 55928.0
14103
+ [Rank 0] (after 1 iterations) memory (MB) | allocated: 21684.97607421875 | max allocated: 51035.55419921875 | reserved: 54392.0 | max reserved: 54392.0
14104
+ [Rank 4] (after 1 iterations) memory (MB) | allocated: 21684.97607421875 | max allocated: 51035.55419921875 | reserved: 54392.0 | max reserved: 54392.0[Rank 5] (after 1 iterations) memory (MB) | allocated: 21684.97607421875 | max allocated: 51035.55419921875 | reserved: 54392.0 | max reserved: 54392.0
14105
+
14106
+ [Rank 2] (after 1 iterations) memory (MB) | allocated: 21684.97607421875 | max allocated: 51035.55419921875 | reserved: 55928.0 | max reserved: 55928.0
attnserver.run_attnserver.slurm.sh.343209.err.log CHANGED
@@ -4733,3 +4733,318 @@ W0621 21:33:45.058000 2009259 site-packages/torch/distributed/run.py:766]
4733
  W0621 21:33:45.058000 2009259 site-packages/torch/distributed/run.py:766] *****************************************
4734
  W0621 21:33:45.058000 2009259 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
4735
  W0621 21:33:45.058000 2009259 site-packages/torch/distributed/run.py:766] *****************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4733
  W0621 21:33:45.058000 2009259 site-packages/torch/distributed/run.py:766] *****************************************
4734
  W0621 21:33:45.058000 2009259 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
4735
  W0621 21:33:45.058000 2009259 site-packages/torch/distributed/run.py:766] *****************************************
4736
+ [rank5]:[W621 21:34:05.450271195 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
4737
+ [rank0]:[W621 21:34:05.164434007 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
4738
+ [rank4]:[W621 21:34:05.178424719 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
4739
+ [rank1]:[W621 21:34:05.178497648 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
4740
+ [rank2]:[W621 21:34:05.180917207 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
4741
+ [rank3]:[W621 21:34:05.183453769 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
4742
+ [rank6]:[W621 21:34:05.183555161 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
4743
+ [rank7]:[W621 21:34:05.187468500 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
4744
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
4745
+ warnings.warn(
4746
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
4747
+ warnings.warn(
4748
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
4749
+ warnings.warn(
4750
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
4751
+ warnings.warn(
4752
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
4753
+ warnings.warn(
4754
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
4755
+ warnings.warn(
4756
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
4757
+ warnings.warn(
4758
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
4759
+ warnings.warn(
4760
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
4761
+ warnings.warn(
4762
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
4763
+ warnings.warn(
4764
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
4765
+ warnings.warn(
4766
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
4767
+ warnings.warn(
4768
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
4769
+ warnings.warn(
4770
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
4771
+ warnings.warn(
4772
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
4773
+ warnings.warn(
4774
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
4775
+ warnings.warn(
4776
+ [rank6]: Traceback (most recent call last):
4777
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
4778
+ [rank6]: pretrain(
4779
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
4780
+ [rank6]: iteration, num_floating_point_operations_so_far = train(
4781
+ [rank6]: ^^^^^^
4782
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
4783
+ [rank6]: ) = train_step(
4784
+ [rank6]: ^^^^^^^^^^^
4785
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
4786
+ [rank6]: losses_reduced = forward_backward_func(
4787
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^
4788
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
4789
+ [rank6]: output_tensor, num_tokens = forward_step(
4790
+ [rank6]: ^^^^^^^^^^^^^
4791
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
4792
+ [rank6]: output_tensor, loss_func = forward_step_func(data_iterator, model)
4793
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4794
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
4795
+ [rank6]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
4796
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^^^
4797
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
4798
+ [rank6]: batch = next(global_batches)
4799
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^
4800
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
4801
+ [rank6]: attention_mask = torch.ones(
4802
+ [rank6]: ^^^^^^^^^^^
4803
+ [rank6]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
4804
+ [rank3]: Traceback (most recent call last):
4805
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
4806
+ [rank3]: pretrain(
4807
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
4808
+ [rank3]: iteration, num_floating_point_operations_so_far = train(
4809
+ [rank3]: ^^^^^^
4810
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
4811
+ [rank3]: ) = train_step(
4812
+ [rank3]: ^^^^^^^^^^^
4813
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
4814
+ [rank3]: losses_reduced = forward_backward_func(
4815
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^
4816
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
4817
+ [rank3]: output_tensor, num_tokens = forward_step(
4818
+ [rank3]: ^^^^^^^^^^^^^
4819
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
4820
+ [rank3]: output_tensor, loss_func = forward_step_func(data_iterator, model)
4821
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4822
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
4823
+ [rank3]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
4824
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^
4825
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
4826
+ [rank3]: batch = next(global_batches)
4827
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^
4828
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
4829
+ [rank3]: attention_mask = torch.ones(
4830
+ [rank3]: ^^^^^^^^^^^
4831
+ [rank3]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
4832
+ [rank5]: Traceback (most recent call last):
4833
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
4834
+ [rank5]: pretrain(
4835
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
4836
+ [rank5]: iteration, num_floating_point_operations_so_far = train(
4837
+ [rank5]: ^^^^^^
4838
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
4839
+ [rank5]: ) = train_step(
4840
+ [rank5]: ^^^^^^^^^^^
4841
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
4842
+ [rank5]: losses_reduced = forward_backward_func(
4843
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^
4844
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
4845
+ [rank5]: output_tensor, num_tokens = forward_step(
4846
+ [rank5]: ^^^^^^^^^^^^^
4847
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
4848
+ [rank5]: output_tensor, loss_func = forward_step_func(data_iterator, model)
4849
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4850
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
4851
+ [rank5]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
4852
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^
4853
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
4854
+ [rank5]: batch = next(global_batches)
4855
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^
4856
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
4857
+ [rank5]: attention_mask = torch.ones(
4858
+ [rank5]: ^^^^^^^^^^^
4859
+ [rank5]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
4860
+ [rank0]: Traceback (most recent call last):
4861
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
4862
+ [rank0]: pretrain(
4863
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
4864
+ [rank0]: iteration, num_floating_point_operations_so_far = train(
4865
+ [rank0]: ^^^^^^
4866
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
4867
+ [rank0]: ) = train_step(
4868
+ [rank0]: ^^^^^^^^^^^
4869
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
4870
+ [rank0]: losses_reduced = forward_backward_func(
4871
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^
4872
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
4873
+ [rank0]: output_tensor, num_tokens = forward_step(
4874
+ [rank0]: ^^^^^^^^^^^^^
4875
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
4876
+ [rank0]: output_tensor, loss_func = forward_step_func(data_iterator, model)
4877
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4878
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
4879
+ [rank0]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
4880
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^
4881
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
4882
+ [rank0]: batch = next(global_batches)
4883
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^
4884
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
4885
+ [rank0]: attention_mask = torch.ones(
4886
+ [rank0]: ^^^^^^^^^^^
4887
+ [rank0]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
4888
+ [rank4]: Traceback (most recent call last):
4889
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
4890
+ [rank4]: pretrain(
4891
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
4892
+ [rank4]: iteration, num_floating_point_operations_so_far = train(
4893
+ [rank4]: ^^^^^^
4894
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
4895
+ [rank4]: ) = train_step(
4896
+ [rank4]: ^^^^^^^^^^^
4897
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
4898
+ [rank4]: losses_reduced = forward_backward_func(
4899
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^
4900
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
4901
+ [rank4]: output_tensor, num_tokens = forward_step(
4902
+ [rank4]: ^^^^^^^^^^^^^
4903
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
4904
+ [rank4]: output_tensor, loss_func = forward_step_func(data_iterator, model)
4905
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4906
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
4907
+ [rank4]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
4908
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^^^
4909
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
4910
+ [rank4]: batch = next(global_batches)
4911
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^
4912
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
4913
+ [rank4]: attention_mask = torch.ones(
4914
+ [rank4]: ^^^^^^^^^^^
4915
+ [rank4]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
4916
+ [rank1]: Traceback (most recent call last):
4917
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
4918
+ [rank1]: pretrain(
4919
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
4920
+ [rank1]: iteration, num_floating_point_operations_so_far = train(
4921
+ [rank1]: ^^^^^^
4922
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
4923
+ [rank1]: ) = train_step(
4924
+ [rank1]: ^^^^^^^^^^^
4925
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
4926
+ [rank1]: losses_reduced = forward_backward_func(
4927
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^
4928
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
4929
+ [rank1]: output_tensor, num_tokens = forward_step(
4930
+ [rank1]: ^^^^^^^^^^^^^
4931
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
4932
+ [rank1]: output_tensor, loss_func = forward_step_func(data_iterator, model)
4933
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4934
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
4935
+ [rank1]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
4936
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^
4937
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
4938
+ [rank1]: batch = next(global_batches)
4939
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^
4940
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
4941
+ [rank1]: attention_mask = torch.ones(
4942
+ [rank1]: ^^^^^^^^^^^
4943
+ [rank1]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
4944
+ [rank7]: Traceback (most recent call last):
4945
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
4946
+ [rank7]: pretrain(
4947
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
4948
+ [rank7]: iteration, num_floating_point_operations_so_far = train(
4949
+ [rank7]: ^^^^^^
4950
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
4951
+ [rank7]: ) = train_step(
4952
+ [rank7]: ^^^^^^^^^^^
4953
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
4954
+ [rank7]: losses_reduced = forward_backward_func(
4955
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^
4956
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
4957
+ [rank7]: output_tensor, num_tokens = forward_step(
4958
+ [rank7]: ^^^^^^^^^^^^^
4959
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
4960
+ [rank7]: output_tensor, loss_func = forward_step_func(data_iterator, model)
4961
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4962
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
4963
+ [rank7]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
4964
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^^^
4965
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
4966
+ [rank7]: batch = next(global_batches)
4967
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^
4968
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
4969
+ [rank7]: attention_mask = torch.ones(
4970
+ [rank7]: ^^^^^^^^^^^
4971
+ [rank7]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
4972
+ [rank2]: Traceback (most recent call last):
4973
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
4974
+ [rank2]: pretrain(
4975
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
4976
+ [rank2]: iteration, num_floating_point_operations_so_far = train(
4977
+ [rank2]: ^^^^^^
4978
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
4979
+ [rank2]: ) = train_step(
4980
+ [rank2]: ^^^^^^^^^^^
4981
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
4982
+ [rank2]: losses_reduced = forward_backward_func(
4983
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^
4984
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
4985
+ [rank2]: output_tensor, num_tokens = forward_step(
4986
+ [rank2]: ^^^^^^^^^^^^^
4987
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
4988
+ [rank2]: output_tensor, loss_func = forward_step_func(data_iterator, model)
4989
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4990
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
4991
+ [rank2]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
4992
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^
4993
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
4994
+ [rank2]: batch = next(global_batches)
4995
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^
4996
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
4997
+ [rank2]: attention_mask = torch.ones(
4998
+ [rank2]: ^^^^^^^^^^^
4999
+ [rank2]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
5000
+ [rank4]:[W621 21:34:20.239208441 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5001
+ [rank1]:[W621 21:34:20.266107719 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5002
+ [rank7]:[W621 21:34:20.275130946 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5003
+ [rank6]:[W621 21:34:20.327006670 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5004
+ [rank3]:[W621 21:34:20.340917591 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5005
+ [rank2]:[W621 21:34:20.379023672 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5006
+ [rank5]:[W621 21:34:20.389656281 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
5007
+ W0621 21:34:21.239000 2009259 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2009329 closing signal SIGTERM
5008
+ W0621 21:34:21.242000 2009259 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2009330 closing signal SIGTERM
5009
+ W0621 21:34:21.242000 2009259 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2009331 closing signal SIGTERM
5010
+ W0621 21:34:21.243000 2009259 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2009332 closing signal SIGTERM
5011
+ W0621 21:34:21.243000 2009259 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2009334 closing signal SIGTERM
5012
+ W0621 21:34:21.244000 2009259 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2009335 closing signal SIGTERM
5013
+ W0621 21:34:21.244000 2009259 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2009336 closing signal SIGTERM
5014
+ E0621 21:34:21.516000 2009259 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 4 (pid: 2009333) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
5015
+ Traceback (most recent call last):
5016
+ File "<frozen runpy>", line 198, in _run_module_as_main
5017
+ File "<frozen runpy>", line 88, in _run_code
5018
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
5019
+ main()
5020
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
5021
+ return arg(*args, **kwargs)
5022
+ ^^^^^^^^^^^^^^^^^^^^
5023
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
5024
+ launch(args)
5025
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
5026
+ run(args)
5027
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
5028
+ elastic_launch(
5029
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
5030
+ return launch_agent(self._config, self._entrypoint, list(args))
5031
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5032
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
5033
+ raise ChildFailedError(
5034
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
5035
+ ============================================================
5036
+ ./pretrain_gpt_profile.py FAILED
5037
+ ------------------------------------------------------------
5038
+ Failures:
5039
+ <NO_OTHER_FAILURES>
5040
+ ------------------------------------------------------------
5041
+ Root Cause (first observed failure):
5042
+ [0]:
5043
+ time : 2025-06-21_21:34:21
5044
+ host : fs-mbz-gpu-702
5045
+ rank : 4 (local_rank: 4)
5046
+ exitcode : 1 (pid: 2009333)
5047
+ error_file: <N/A>
5048
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
5049
+ ============================================================
5050
+ + set +x
attnserver.run_attnserver.slurm.sh.343209.out.log CHANGED
@@ -16471,3 +16471,657 @@ CHECKPOINT_PATH: gpt-checkpoint
16471
  PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
16472
  --------------------------------
16473
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16471
  PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
16472
  --------------------------------
16473
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
16474
+ INFO:megatron.training.initialize:Setting logging level to 0
16475
+ INFO:megatron.training.initialize:Setting logging level to 0
16476
+ WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written.
16477
+ WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it
16478
+ INFO:megatron.training.initialize:Setting logging level to 0
16479
+ using world size: 8, data-parallel size: 1, context-parallel size: 1, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 8, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0
16480
+ Number of virtual stages per pipeline stage: None
16481
+ WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used
16482
+ using torch.float16 for parameters ...
16483
+ ------------------------ arguments ------------------------
16484
+ account_for_embedding_in_pipeline_split ......... False
16485
+ account_for_loss_in_pipeline_split .............. False
16486
+ accumulate_allreduce_grads_in_fp32 .............. False
16487
+ adam_beta1 ...................................... 0.9
16488
+ adam_beta2 ...................................... 0.999
16489
+ adam_eps ........................................ 1e-08
16490
+ add_bias_linear ................................. True
16491
+ add_position_embedding .......................... True
16492
+ add_qkv_bias .................................... True
16493
+ adlr_autoresume ................................. False
16494
+ adlr_autoresume_interval ........................ 1000
16495
+ align_grad_reduce ............................... True
16496
+ align_param_gather .............................. False
16497
+ app_tag_run_name ................................ None
16498
+ app_tag_run_version ............................. 0.0.0
16499
+ apply_layernorm_1p .............................. False
16500
+ apply_query_key_layer_scaling ................... False
16501
+ apply_residual_connection_post_layernorm ........ False
16502
+ apply_rope_fusion ............................... False
16503
+ async_save ...................................... None
16504
+ async_tensor_model_parallel_allreduce ........... True
16505
+ attention_backend ............................... AttnBackend.auto
16506
+ attention_dropout ............................... 0.1
16507
+ attention_softmax_in_fp32 ....................... False
16508
+ auto_detect_ckpt_format ......................... False
16509
+ barrier_with_L1_time ............................ True
16510
+ bert_binary_head ................................ True
16511
+ bert_embedder_type .............................. megatron
16512
+ bert_load ....................................... None
16513
+ bf16 ............................................ False
16514
+ bias_dropout_fusion ............................. True
16515
+ bias_gelu_fusion ................................ True
16516
+ bias_swiglu_fusion .............................. True
16517
+ biencoder_projection_dim ........................ 0
16518
+ biencoder_shared_query_context_model ............ False
16519
+ block_data_path ................................. None
16520
+ calc_ft_timeouts ................................ False
16521
+ calculate_per_token_loss ........................ False
16522
+ check_for_large_grads ........................... False
16523
+ check_for_nan_in_loss_and_grad .................. False
16524
+ check_for_spiky_loss ............................ False
16525
+ check_weight_hash_across_dp_replicas_interval ... None
16526
+ ckpt_assume_constant_structure .................. False
16527
+ ckpt_convert_format ............................. None
16528
+ ckpt_convert_save ............................... None
16529
+ ckpt_convert_update_legacy_dist_opt_format ...... False
16530
+ ckpt_format ..................................... torch_dist
16531
+ ckpt_fully_parallel_load ........................ False
16532
+ ckpt_fully_parallel_save ........................ True
16533
+ ckpt_fully_parallel_save_deprecated ............. False
16534
+ ckpt_step ....................................... None
16535
+ classes_fraction ................................ 1.0
16536
+ clip_grad ....................................... 1.0
16537
+ clone_scatter_output_in_embedding ............... True
16538
+ config_logger_dir ...............................
16539
+ consumed_train_samples .......................... 0
16540
+ consumed_valid_samples .......................... 0
16541
+ context_parallel_size ........................... 1
16542
+ cp_comm_type .................................... ['p2p']
16543
+ create_attention_mask_in_dataloader ............. True
16544
+ cross_entropy_fusion_impl ....................... native
16545
+ cross_entropy_loss_fusion ....................... False
16546
+ cuda_graph_scope ................................ full
16547
+ cuda_graph_warmup_steps ......................... 3
16548
+ data_args_path .................................. None
16549
+ data_cache_path ................................. None
16550
+ data_parallel_random_init ....................... False
16551
+ data_parallel_sharding_strategy ................. no_shard
16552
+ data_parallel_size .............................. 1
16553
+ data_path ....................................... None
16554
+ data_per_class_fraction ......................... 1.0
16555
+ data_sharding ................................... True
16556
+ dataloader_type ................................. single
16557
+ ddp_average_in_collective ....................... False
16558
+ ddp_bucket_size ................................. None
16559
+ ddp_num_buckets ................................. None
16560
+ ddp_pad_buckets_for_high_nccl_busbw ............. False
16561
+ decoder_first_pipeline_num_layers ............... None
16562
+ decoder_last_pipeline_num_layers ................ None
16563
+ decoder_num_layers .............................. None
16564
+ decoder_seq_length .............................. None
16565
+ decoupled_lr .................................... None
16566
+ decoupled_min_lr ................................ None
16567
+ decrease_batch_size_if_needed ................... False
16568
+ defer_embedding_wgrad_compute ................... False
16569
+ deprecated_use_mcore_models ..................... False
16570
+ deterministic_mode .............................. False
16571
+ dino_bottleneck_size ............................ 256
16572
+ dino_freeze_last_layer .......................... 1
16573
+ dino_head_hidden_size ........................... 2048
16574
+ dino_local_crops_number ......................... 10
16575
+ dino_local_img_size ............................. 96
16576
+ dino_norm_last_layer ............................ False
16577
+ dino_teacher_temp ............................... 0.07
16578
+ dino_warmup_teacher_temp ........................ 0.04
16579
+ dino_warmup_teacher_temp_epochs ................. 30
16580
+ disable_bf16_reduced_precision_matmul ........... False
16581
+ disable_mamba_mem_eff_path ...................... False
16582
+ disable_straggler_on_startup .................... False
16583
+ dist_ckpt_format_deprecated ..................... None
16584
+ dist_ckpt_strictness ............................ assume_ok_unexpected
16585
+ distribute_saved_activations .................... False
16586
+ distributed_backend ............................. nccl
16587
+ distributed_timeout_minutes ..................... 10
16588
+ embedding_path .................................. None
16589
+ empty_unused_memory_level ....................... 0
16590
+ enable_cuda_graph ............................... False
16591
+ enable_ft_package ............................... False
16592
+ enable_gloo_process_groups ...................... True
16593
+ enable_msc ...................................... True
16594
+ enable_one_logger ............................... True
16595
+ encoder_num_layers .............................. 2
16596
+ encoder_pipeline_model_parallel_size ............ 0
16597
+ encoder_seq_length .............................. 131072
16598
+ encoder_tensor_model_parallel_size .............. 0
16599
+ end_weight_decay ................................ 0.1
16600
+ eod_mask_loss ................................... False
16601
+ error_injection_rate ............................ 0
16602
+ error_injection_type ............................ transient_error
16603
+ eval_interval ................................... 16
16604
+ eval_iters ...................................... 1
16605
+ evidence_data_path .............................. None
16606
+ exit_duration_in_mins ........................... None
16607
+ exit_interval ................................... None
16608
+ exit_on_missing_checkpoint ...................... False
16609
+ exit_signal_handler ............................. False
16610
+ exp_avg_dtype ................................... torch.float32
16611
+ exp_avg_sq_dtype ................................ torch.float32
16612
+ expert_model_parallel_size ...................... 1
16613
+ expert_tensor_parallel_size ..................... 8
16614
+ external_cuda_graph ............................. False
16615
+ ffn_hidden_size ................................. 16384
16616
+ finetune ........................................ False
16617
+ first_last_layers_bf16 .......................... False
16618
+ flash_decode .................................... False
16619
+ fp16 ............................................ True
16620
+ fp16_lm_cross_entropy ........................... False
16621
+ fp32_residual_connection ........................ False
16622
+ fp8 ............................................. None
16623
+ fp8_amax_compute_algo ........................... most_recent
16624
+ fp8_amax_history_len ............................ 1
16625
+ fp8_interval .................................... 1
16626
+ fp8_margin ...................................... 0
16627
+ fp8_param_gather ................................ False
16628
+ fp8_recipe ...................................... delayed
16629
+ fp8_wgrad ....................................... True
16630
+ fsdp_double_buffer .............................. False
16631
+ global_batch_size ............................... 1
16632
+ grad_reduce_in_bf16 ............................. False
16633
+ gradient_accumulation_fusion .................... True
16634
+ gradient_reduce_div_fusion ...................... True
16635
+ group_query_attention ........................... True
16636
+ head_lr_mult .................................... 1.0
16637
+ heterogeneous_layers_config_encoded_json ........ None
16638
+ heterogeneous_layers_config_path ................ None
16639
+ hidden_dropout .................................. 0.1
16640
+ hidden_size ..................................... 4096
16641
+ hierarchical_context_parallel_sizes ............. None
16642
+ high_priority_stream_groups ..................... []
16643
+ hybrid_attention_ratio .......................... 0.0
16644
+ hybrid_mlp_ratio ................................ 0.0
16645
+ hybrid_override_pattern ......................... None
16646
+ hysteresis ...................................... 2
16647
+ ict_head_size ................................... None
16648
+ ict_load ........................................ None
16649
+ img_h ........................................... 224
16650
+ img_w ........................................... 224
16651
+ indexer_batch_size .............................. 128
16652
+ indexer_log_interval ............................ 1000
16653
+ inference_batch_times_seqlen_threshold .......... -1
16654
+ inference_dynamic_batching ...................... False
16655
+ inference_dynamic_batching_buffer_guaranteed_fraction 0.2
16656
+ inference_dynamic_batching_buffer_overflow_factor None
16657
+ inference_dynamic_batching_buffer_size_gb ....... 40.0
16658
+ inference_dynamic_batching_chunk_size ........... 256
16659
+ inference_dynamic_batching_max_requests_override None
16660
+ inference_dynamic_batching_max_tokens_override .. None
16661
+ inference_max_batch_size ........................ 8
16662
+ inference_max_seq_length ........................ 2560
16663
+ inference_rng_tracker ........................... False
16664
+ init_method_std ................................. 0.02
16665
+ init_method_xavier_uniform ...................... False
16666
+ init_model_with_meta_device ..................... False
16667
+ initial_loss_scale .............................. 4294967296
16668
+ inprocess_active_world_size ..................... 8
16669
+ inprocess_barrier_timeout ....................... 120
16670
+ inprocess_completion_timeout .................... 120
16671
+ inprocess_empty_cuda_cache ...................... False
16672
+ inprocess_granularity ........................... node
16673
+ inprocess_hard_timeout .......................... 90
16674
+ inprocess_heartbeat_interval .................... 30
16675
+ inprocess_heartbeat_timeout ..................... 60
16676
+ inprocess_last_call_wait ........................ 1
16677
+ inprocess_max_iterations ........................ None
16678
+ inprocess_monitor_process_interval .............. 1.0
16679
+ inprocess_monitor_thread_interval ............... 1.0
16680
+ inprocess_progress_watchdog_interval ............ 1.0
16681
+ inprocess_restart ............................... False
16682
+ inprocess_soft_timeout .......................... 60
16683
+ inprocess_termination_grace_time ................ 1
16684
+ is_hybrid_model ................................. False
16685
+ iter_per_epoch .................................. 1250
16686
+ iterations_to_skip .............................. []
16687
+ keep_fp8_transpose_cache_when_using_custom_fsdp . False
16688
+ kv_channels ..................................... 64
16689
+ kv_lora_rank .................................... 32
16690
+ lazy_mpu_init ................................... None
16691
+ load ............................................ gpt-checkpoint
16692
+ load_model_opt_format ........................... False
16693
+ local_rank ...................................... 0
16694
+ log_interval .................................... 1
16695
+ log_loss_scale_to_tensorboard ................... True
16696
+ log_memory_to_tensorboard ....................... False
16697
+ log_num_zeros_in_grad ........................... False
16698
+ log_params_norm ................................. False
16699
+ log_progress .................................... False
16700
+ log_straggler ................................... False
16701
+ log_throughput .................................. False
16702
+ log_timers_to_tensorboard ....................... False
16703
+ log_validation_ppl_to_tensorboard ............... False
16704
+ log_world_size_to_tensorboard ................... False
16705
+ logging_level ................................... 0
16706
+ loss_scale ...................................... None
16707
+ loss_scale_window ............................... 1000
16708
+ lr .............................................. 0.0005
16709
+ lr_decay_iters .................................. 150000
16710
+ lr_decay_samples ................................ None
16711
+ lr_decay_style .................................. cosine
16712
+ lr_warmup_fraction .............................. None
16713
+ lr_warmup_init .................................. 0.0
16714
+ lr_warmup_iters ................................. 2
16715
+ lr_warmup_samples ............................... 0
16716
+ lr_wsd_decay_iters .............................. None
16717
+ lr_wsd_decay_samples ............................ None
16718
+ lr_wsd_decay_style .............................. exponential
16719
+ main_grads_dtype ................................ torch.float32
16720
+ main_params_dtype ............................... torch.float32
16721
+ make_vocab_size_divisible_by .................... 128
16722
+ mamba_head_dim .................................. 64
16723
+ mamba_num_groups ................................ 8
16724
+ mamba_num_heads ................................. None
16725
+ mamba_state_dim ................................. 128
16726
+ manual_gc ....................................... False
16727
+ manual_gc_eval .................................. True
16728
+ manual_gc_interval .............................. 0
16729
+ mask_factor ..................................... 1.0
16730
+ mask_prob ....................................... 0.15
16731
+ mask_type ....................................... random
16732
+ masked_softmax_fusion ........................... True
16733
+ max_position_embeddings ......................... 131072
16734
+ max_tokens_to_oom ............................... 12000
16735
+ memory_snapshot_path ............................ snapshot.pickle
16736
+ merge_file ...................................... merges.txt
16737
+ micro_batch_size ................................ 1
16738
+ microbatch_group_size_per_vp_stage .............. None
16739
+ mid_level_dataset_surplus ....................... 0.005
16740
+ min_loss_scale .................................. 1.0
16741
+ min_lr .......................................... 0.0
16742
+ mlp_chunks_for_prefill .......................... 1
16743
+ mmap_bin_files .................................. True
16744
+ mock_data ....................................... True
16745
+ moe_apply_probs_on_input ........................ False
16746
+ moe_aux_loss_coeff .............................. 0.0
16747
+ moe_enable_deepep ............................... False
16748
+ moe_expert_capacity_factor ...................... None
16749
+ moe_extended_tp ................................. False
16750
+ moe_ffn_hidden_size ............................. None
16751
+ moe_grouped_gemm ................................ False
16752
+ moe_input_jitter_eps ............................ None
16753
+ moe_layer_freq .................................. 1
16754
+ moe_layer_recompute ............................. False
16755
+ moe_pad_expert_input_to_capacity ................ False
16756
+ moe_per_layer_logging ........................... False
16757
+ moe_permute_fusion .............................. False
16758
+ moe_router_bias_update_rate ..................... 0.001
16759
+ moe_router_dtype ................................ None
16760
+ moe_router_enable_expert_bias ................... False
16761
+ moe_router_force_load_balancing ................. False
16762
+ moe_router_group_topk ........................... None
16763
+ moe_router_load_balancing_type .................. aux_loss
16764
+ moe_router_num_groups ........................... None
16765
+ moe_router_padding_for_fp8 ...................... False
16766
+ moe_router_pre_softmax .......................... False
16767
+ moe_router_score_function ....................... softmax
16768
+ moe_router_topk ................................. 2
16769
+ moe_router_topk_scaling_factor .................. None
16770
+ moe_shared_expert_intermediate_size ............. None
16771
+ moe_shared_expert_overlap ....................... False
16772
+ moe_token_dispatcher_type ....................... allgather
16773
+ moe_token_drop_policy ........................... probs
16774
+ moe_use_legacy_grouped_gemm ..................... False
16775
+ moe_use_upcycling ............................... False
16776
+ moe_z_loss_coeff ................................ None
16777
+ mrope_section ................................... None
16778
+ mscale .......................................... 1.0
16779
+ mscale_all_dim .................................. 1.0
16780
+ mtp_loss_scaling_factor ......................... 0.1
16781
+ mtp_num_layers .................................. None
16782
+ multi_latent_attention .......................... False
16783
+ nccl_all_reduce_for_prefill ..................... False
16784
+ nccl_communicator_config_path ................... None
16785
+ nccl_ub ......................................... False
16786
+ no_load_optim ................................... None
16787
+ no_load_rng ..................................... None
16788
+ no_persist_layer_norm ........................... False
16789
+ no_rope_freq .................................... None
16790
+ no_save_optim ................................... None
16791
+ no_save_rng ..................................... None
16792
+ non_persistent_ckpt_type ........................ None
16793
+ non_persistent_global_ckpt_dir .................. None
16794
+ non_persistent_local_ckpt_algo .................. fully_parallel
16795
+ non_persistent_local_ckpt_dir ................... None
16796
+ non_persistent_save_interval .................... None
16797
+ norm_epsilon .................................... 1e-05
16798
+ normalization ................................... LayerNorm
16799
+ num_attention_heads ............................. 64
16800
+ num_channels .................................... 3
16801
+ num_classes ..................................... 1000
16802
+ num_dataset_builder_threads ..................... 1
16803
+ num_distributed_optimizer_instances ............. 1
16804
+ num_experts ..................................... None
16805
+ num_layers ...................................... 2
16806
+ num_layers_at_end_in_bf16 ....................... 1
16807
+ num_layers_at_start_in_bf16 ..................... 1
16808
+ num_layers_per_virtual_pipeline_stage ........... None
16809
+ num_query_groups ................................ 16
16810
+ num_virtual_stages_per_pipeline_rank ............ None
16811
+ num_workers ..................................... 2
16812
+ object_storage_cache_path ....................... None
16813
+ one_logger_async ................................ False
16814
+ one_logger_project .............................. megatron-lm
16815
+ one_logger_run_name ............................. None
16816
+ onnx_safe ....................................... None
16817
+ openai_gelu ..................................... False
16818
+ optimizer ....................................... adam
16819
+ optimizer_cpu_offload ........................... False
16820
+ optimizer_offload_fraction ...................... 1.0
16821
+ output_bert_embeddings .......................... False
16822
+ overlap_cpu_optimizer_d2h_h2d ................... False
16823
+ overlap_grad_reduce ............................. False
16824
+ overlap_p2p_comm ................................ False
16825
+ overlap_p2p_comm_warmup_flush ................... False
16826
+ overlap_param_gather ............................ False
16827
+ overlap_param_gather_with_optimizer_step ........ False
16828
+ override_opt_param_scheduler .................... False
16829
+ params_dtype .................................... torch.float16
16830
+ patch_dim ....................................... 16
16831
+ per_split_data_args_path ........................ None
16832
+ perform_initialization .......................... True
16833
+ pin_cpu_grads ................................... True
16834
+ pin_cpu_params .................................. True
16835
+ pipeline_model_parallel_comm_backend ............ None
16836
+ pipeline_model_parallel_size .................... 1
16837
+ pipeline_model_parallel_split_rank .............. None
16838
+ position_embedding_type ......................... learned_absolute
16839
+ pretrained_checkpoint ........................... None
16840
+ profile ......................................... False
16841
+ profile_ranks ................................... [0]
16842
+ profile_step_end ................................ 12
16843
+ profile_step_start .............................. 10
16844
+ q_lora_rank ..................................... None
16845
+ qk_head_dim ..................................... 128
16846
+ qk_l2_norm ...................................... False
16847
+ qk_layernorm .................................... False
16848
+ qk_pos_emb_head_dim ............................. 64
16849
+ query_in_block_prob ............................. 0.1
16850
+ rampup_batch_size ............................... None
16851
+ rank ............................................ 0
16852
+ recompute_granularity ........................... None
16853
+ recompute_method ................................ None
16854
+ recompute_modules ............................... None
16855
+ recompute_num_layers ............................ None
16856
+ record_memory_history ........................... False
16857
+ relative_attention_max_distance ................. 128
16858
+ relative_attention_num_buckets .................. 32
16859
+ replication ..................................... False
16860
+ replication_factor .............................. 2
16861
+ replication_jump ................................ None
16862
+ rerun_mode ...................................... disabled
16863
+ reset_attention_mask ............................ False
16864
+ reset_position_ids .............................. False
16865
+ result_rejected_tracker_filename ................ None
16866
+ retriever_report_topk_accuracies ................ []
16867
+ retriever_score_scaling ......................... False
16868
+ retriever_seq_length ............................ 256
16869
+ retro_add_retriever ............................. False
16870
+ retro_attention_gate ............................ 1
16871
+ retro_cyclic_train_iters ........................ None
16872
+ retro_encoder_attention_dropout ................. 0.1
16873
+ retro_encoder_hidden_dropout .................... 0.1
16874
+ retro_encoder_layers ............................ 2
16875
+ retro_num_neighbors ............................. 2
16876
+ retro_num_retrieved_chunks ...................... 2
16877
+ retro_project_dir ............................... None
16878
+ retro_verify_neighbor_count ..................... True
16879
+ rope_scaling_factor ............................. 8.0
16880
+ rotary_base ..................................... 10000
16881
+ rotary_interleaved .............................. False
16882
+ rotary_percent .................................. 1.0
16883
+ rotary_scaling_factor ........................... 1.0
16884
+ rotary_seq_len_interpolation_factor ............. None
16885
+ run_workload_inspector_server ................... False
16886
+ sample_rate ..................................... 1.0
16887
+ save ............................................ gpt-checkpoint
16888
+ save_interval ................................... 16
16889
+ scatter_gather_tensors_in_pipeline .............. True
16890
+ seed ............................................ 1234
16891
+ seq_length ...................................... 131072
16892
+ sequence_parallel ............................... False
16893
+ sgd_momentum .................................... 0.9
16894
+ short_seq_prob .................................. 0.1
16895
+ skip_train ...................................... False
16896
+ skipped_train_samples ........................... 0
16897
+ spec ............................................ None
16898
+ split ........................................... None
16899
+ squared_relu .................................... False
16900
+ start_weight_decay .............................. 0.1
16901
+ straggler_ctrlr_port ............................ 65535
16902
+ straggler_minmax_count .......................... 1
16903
+ suggested_communication_unit_size ............... None
16904
+ swiglu .......................................... False
16905
+ swin_backbone_type .............................. tiny
16906
+ symmetric_ar_type ............................... None
16907
+ te_rng_tracker .................................. False
16908
+ tensor_model_parallel_size ...................... 8
16909
+ tensorboard_dir ................................. tensorboard-logs/
16910
+ tensorboard_log_interval ........................ 1
16911
+ tensorboard_queue_size .......................... 1000
16912
+ test_data_path .................................. None
16913
+ test_mode ....................................... False
16914
+ tiktoken_num_special_tokens ..................... 1000
16915
+ tiktoken_pattern ................................ None
16916
+ tiktoken_special_tokens ......................... None
16917
+ timing_log_level ................................ 0
16918
+ timing_log_option ............................... minmax
16919
+ titles_data_path ................................ None
16920
+ tokenizer_model ................................. None
16921
+ tokenizer_type .................................. GPT2BPETokenizer
16922
+ torch_fsdp2_reshard_after_forward ............... True
16923
+ tp_comm_bootstrap_backend ....................... nccl
16924
+ tp_comm_bulk_dgrad .............................. True
16925
+ tp_comm_bulk_wgrad .............................. True
16926
+ tp_comm_overlap ................................. False
16927
+ tp_comm_overlap_ag .............................. True
16928
+ tp_comm_overlap_cfg ............................. None
16929
+ tp_comm_overlap_rs .............................. True
16930
+ tp_comm_overlap_rs_dgrad ........................ False
16931
+ tp_comm_split_ag ................................ True
16932
+ tp_comm_split_rs ................................ True
16933
+ train_data_path ................................. None
16934
+ train_iters ..................................... 10
16935
+ train_samples ................................... None
16936
+ train_sync_interval ............................. None
16937
+ transformer_impl ................................ transformer_engine
16938
+ transformer_pipeline_model_parallel_size ........ 1
16939
+ untie_embeddings_and_output_weights ............. False
16940
+ use_checkpoint_args ............................. False
16941
+ use_checkpoint_opt_param_scheduler .............. False
16942
+ use_cpu_initialization .......................... None
16943
+ use_custom_fsdp ................................. False
16944
+ use_dist_ckpt ................................... True
16945
+ use_dist_ckpt_deprecated ........................ False
16946
+ use_distributed_optimizer ....................... False
16947
+ use_flash_attn .................................. False
16948
+ use_legacy_models ............................... False
16949
+ use_mp_args_from_checkpoint_args ................ False
16950
+ use_one_sent_docs ............................... False
16951
+ use_persistent_ckpt_worker ...................... False
16952
+ use_precision_aware_optimizer ................... False
16953
+ use_pytorch_profiler ............................ False
16954
+ use_ring_exchange_p2p ........................... False
16955
+ use_rope_scaling ................................ False
16956
+ use_rotary_position_embeddings .................. False
16957
+ use_sharp ....................................... False
16958
+ use_tokenizer_model_from_checkpoint_args ........ True
16959
+ use_torch_fsdp2 ................................. False
16960
+ use_torch_optimizer_for_cpu_offload ............. False
16961
+ use_tp_pp_dp_mapping ............................ False
16962
+ v_head_dim ...................................... 128
16963
+ valid_data_path ................................. None
16964
+ variable_seq_lengths ............................ False
16965
+ virtual_pipeline_model_parallel_size ............ None
16966
+ vision_backbone_type ............................ vit
16967
+ vision_pretraining .............................. False
16968
+ vision_pretraining_type ......................... classify
16969
+ vocab_extra_ids ................................. 0
16970
+ vocab_file ...................................... vocab.json
16971
+ vocab_size ...................................... None
16972
+ wandb_exp_name ..................................
16973
+ wandb_project ...................................
16974
+ wandb_save_dir ..................................
16975
+ weight_decay .................................... 0.1
16976
+ weight_decay_incr_style ......................... constant
16977
+ wgrad_deferral_limit ............................ 0
16978
+ world_size ...................................... 8
16979
+ yaml_cfg ........................................ None
16980
+ -------------------- end of arguments ---------------------
16981
+ INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1
16982
+ > building GPT2BPETokenizer tokenizer ...
16983
+ INFO:megatron.training.initialize:Setting logging level to 0
16984
+ INFO:megatron.training.initialize:Setting logging level to 0
16985
+ INFO:megatron.training.initialize:Setting logging level to 0
16986
+ > padded vocab (size: 50257) with 943 dummy tokens (new size: 51200)
16987
+ INFO:megatron.training.initialize:Setting logging level to 0
16988
+ WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED
16989
+ > initializing torch distributed ...
16990
+ > initialized tensor model parallel with size 8
16991
+ > initialized pipeline model parallel with size 1
16992
+ > setting random seeds to 1234 ...
16993
+ > compiling dataset index builder ...
16994
+ make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
16995
+ INFO:megatron.training.initialize:Setting logging level to 0
16996
+ make: Nothing to be done for 'default'.
16997
+ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
16998
+ >>> done with dataset index builder. Compilation time: 0.050 seconds
16999
+ WARNING: constraints for invoking optimized fused softmax kernel are not met. We default back to unfused kernel invocations.
17000
+ > compiling and loading fused kernels ...
17001
+ >>> done with compiling and loading fused kernels. Compilation time: 2.633 seconds
17002
+ time to initialize megatron (seconds): 8.076
17003
+ [after megatron is initialized] datetime: 2025-06-21 21:34:12
17004
+ building GPT model ...
17005
+ >>> embedding
17006
+ >>> decoder
17007
+ >>> output_layer
17008
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
17009
+ >>> embedding
17010
+ >>> decoder
17011
+ >>> output_layer
17012
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 607188480
17013
+ >>> embedding
17014
+ >>> decoder
17015
+ >>> output_layer
17016
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 607188480
17017
+ >>> embedding
17018
+ >>> decoder
17019
+ >>> output_layer
17020
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 607188480
17021
+ >>> embedding
17022
+ >>> decoder
17023
+ >>> output_layer
17024
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 607188480
17025
+ >>> embedding
17026
+ >>> decoder
17027
+ >>> output_layer
17028
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
17029
+ >>> embedding
17030
+ >>> decoder
17031
+ >>> output_layer
17032
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
17033
+ >>> embedding
17034
+ >>> decoder
17035
+ >>> output_layer
17036
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 607188480
17037
+ INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False)
17038
+ INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1
17039
+ Params for bucket 1 (607188480 elements, 607188480 padded size):
17040
+ module.decoder.layers.1.mlp.linear_fc2.weight
17041
+ module.decoder.layers.1.self_attention.linear_proj.bias
17042
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias
17043
+ module.decoder.layers.0.mlp.linear_fc2.weight
17044
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias
17045
+ module.decoder.final_layernorm.bias
17046
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight
17047
+ module.decoder.layers.1.self_attention.linear_qkv.bias
17048
+ module.decoder.layers.0.mlp.linear_fc2.bias
17049
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight
17050
+ module.decoder.layers.0.self_attention.linear_qkv.bias
17051
+ module.decoder.layers.1.mlp.linear_fc1.weight
17052
+ module.decoder.layers.0.mlp.linear_fc1.weight
17053
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight
17054
+ module.decoder.layers.1.mlp.linear_fc2.bias
17055
+ module.decoder.final_layernorm.weight
17056
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight
17057
+ module.decoder.layers.0.self_attention.linear_proj.weight
17058
+ module.embedding.position_embeddings.weight
17059
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias
17060
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias
17061
+ module.decoder.layers.0.self_attention.linear_proj.bias
17062
+ module.decoder.layers.1.mlp.linear_fc1.bias
17063
+ module.decoder.layers.0.mlp.linear_fc1.bias
17064
+ module.decoder.layers.1.self_attention.linear_qkv.weight
17065
+ module.decoder.layers.1.self_attention.linear_proj.weight
17066
+ module.decoder.layers.0.self_attention.linear_qkv.weight
17067
+ module.embedding.word_embeddings.weight
17068
+ INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x15055792a330>, config_logger_dir='')
17069
+ INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
17070
+ WARNING: could not find the metadata file gpt-checkpoint/latest_checkpointed_iteration.txt
17071
+ will not load any checkpoints and will start from random
17072
+ (min, max) time across ranks (ms):
17073
+ load-checkpoint ................................: (2.72, 3.24)
17074
+ [after model, optimizer, and learning rate scheduler are built] datetime: 2025-06-21 21:34:18
17075
+ > building train, validation, and test datasets ...
17076
+ > datasets target sizes (minimum size):
17077
+ train: 10
17078
+ validation: 1
17079
+ test: 1
17080
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let mock = True, as both blend and blend_per_split are None
17081
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split = 1,1,1, an arbitrarily even split, as mock is True
17082
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split_matrix = [(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)]
17083
+ > building train, validation, and test datasets for GPT ...
17084
+ INFO:megatron.core.datasets.blended_megatron_dataset_builder:Building MockGPTDataset splits with sizes=(10, 1, 1) and config=GPTDatasetConfig(random_seed=1234, sequence_length=131072, blend=None, blend_per_split=None, split='1,1,1', split_matrix=[(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)], num_dataset_builder_threads=1, path_to_cache=None, mmap_bin_files=True, mock=True, tokenizer=<megatron.training.tokenizer.tokenizer._GPT2BPETokenizer object at 0x150557fdc740>, mid_level_dataset_surplus=0.005, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, create_attention_mask=True, drop_last_partial_validation_sequence=True, add_extra_token_to_sequence=True, object_storage_cache_path=None)
17085
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset train indices
17086
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
17087
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
17088
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.005677 seconds
17089
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
17090
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
17091
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset valid indices
17092
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
17093
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
17094
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001687 seconds
17095
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
17096
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
17097
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset test indices
17098
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
17099
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
17100
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001423 seconds
17101
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
17102
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
17103
+ > finished creating GPT datasets ...
17104
+ [after dataloaders are built] datetime: 2025-06-21 21:34:18
17105
+ done with setup ...
17106
+ (min, max) time across ranks (ms):
17107
+ model-and-optimizer-setup ......................: (5741.08, 5741.67)
17108
+ train/valid/test-data-iterators-setup ..........: (16.69, 107.18)
17109
+ training ...
17110
+ Setting rerun_state_machine.current_iteration to 0...
17111
+ [before the start of training step] datetime: 2025-06-21 21:34:18
17112
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
17113
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
17114
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
17115
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
17116
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
17117
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
17118
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
17119
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
17120
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
17121
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
17122
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
17123
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
17124
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
17125
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
17126
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
17127
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 1024.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 133.22 GiB is free. Including non-PyTorch memory, this process has 6.59 GiB memory in use. Of the allocated memory 4.56 GiB is allocated by PyTorch, and 583.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
attnserver.run_attnserver.slurm.sh.343211.err.log CHANGED
@@ -7918,3 +7918,318 @@ W0621 21:33:43.995000 2320490 site-packages/torch/distributed/run.py:766]
7918
  W0621 21:33:43.995000 2320490 site-packages/torch/distributed/run.py:766] *****************************************
7919
  W0621 21:33:43.995000 2320490 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
7920
  W0621 21:33:43.995000 2320490 site-packages/torch/distributed/run.py:766] *****************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7918
  W0621 21:33:43.995000 2320490 site-packages/torch/distributed/run.py:766] *****************************************
7919
  W0621 21:33:43.995000 2320490 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
7920
  W0621 21:33:43.995000 2320490 site-packages/torch/distributed/run.py:766] *****************************************
7921
+ [rank5]:[W621 21:34:05.783419290 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7922
+ [rank0]:[W621 21:34:05.812412856 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7923
+ [rank3]:[W621 21:34:05.820758030 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7924
+ [rank4]:[W621 21:34:05.821116799 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7925
+ [rank2]:[W621 21:34:05.824468374 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7926
+ [rank7]:[W621 21:34:05.824980913 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7927
+ [rank6]:[W621 21:34:05.825012686 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7928
+ [rank1]:[W621 21:34:05.826235847 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7929
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7930
+ warnings.warn(
7931
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7932
+ warnings.warn(
7933
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7934
+ warnings.warn(
7935
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7936
+ warnings.warn(
7937
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7938
+ warnings.warn(
7939
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7940
+ warnings.warn(
7941
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7942
+ warnings.warn(
7943
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7944
+ warnings.warn(
7945
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7946
+ warnings.warn(
7947
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7948
+ warnings.warn(
7949
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7950
+ warnings.warn(
7951
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7952
+ warnings.warn(
7953
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7954
+ warnings.warn(
7955
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7956
+ warnings.warn(
7957
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7958
+ warnings.warn(
7959
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7960
+ warnings.warn(
7961
+ [rank5]: Traceback (most recent call last):
7962
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
7963
+ [rank5]: pretrain(
7964
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
7965
+ [rank5]: iteration, num_floating_point_operations_so_far = train(
7966
+ [rank5]: ^^^^^^
7967
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
7968
+ [rank5]: ) = train_step(
7969
+ [rank5]: ^^^^^^^^^^^
7970
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
7971
+ [rank5]: losses_reduced = forward_backward_func(
7972
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^
7973
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
7974
+ [rank5]: output_tensor, num_tokens = forward_step(
7975
+ [rank5]: ^^^^^^^^^^^^^
7976
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
7977
+ [rank5]: output_tensor, loss_func = forward_step_func(data_iterator, model)
7978
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7979
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
7980
+ [rank5]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
7981
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^
7982
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
7983
+ [rank5]: batch = next(global_batches)
7984
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^
7985
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
7986
+ [rank5]: attention_mask = torch.ones(
7987
+ [rank5]: ^^^^^^^^^^^
7988
+ [rank5]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
7989
+ [rank1]: Traceback (most recent call last):
7990
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
7991
+ [rank1]: pretrain(
7992
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
7993
+ [rank1]: iteration, num_floating_point_operations_so_far = train(
7994
+ [rank1]: ^^^^^^
7995
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
7996
+ [rank1]: ) = train_step(
7997
+ [rank1]: ^^^^^^^^^^^
7998
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
7999
+ [rank1]: losses_reduced = forward_backward_func(
8000
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^
8001
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
8002
+ [rank1]: output_tensor, num_tokens = forward_step(
8003
+ [rank1]: ^^^^^^^^^^^^^
8004
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
8005
+ [rank1]: output_tensor, loss_func = forward_step_func(data_iterator, model)
8006
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8007
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
8008
+ [rank1]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
8009
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^
8010
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
8011
+ [rank1]: batch = next(global_batches)
8012
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^
8013
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
8014
+ [rank1]: attention_mask = torch.ones(
8015
+ [rank1]: ^^^^^^^^^^^
8016
+ [rank1]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
8017
+ [rank7]: Traceback (most recent call last):
8018
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
8019
+ [rank7]: pretrain(
8020
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
8021
+ [rank7]: iteration, num_floating_point_operations_so_far = train(
8022
+ [rank7]: ^^^^^^
8023
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
8024
+ [rank7]: ) = train_step(
8025
+ [rank7]: ^^^^^^^^^^^
8026
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
8027
+ [rank7]: losses_reduced = forward_backward_func(
8028
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^
8029
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
8030
+ [rank7]: output_tensor, num_tokens = forward_step(
8031
+ [rank7]: ^^^^^^^^^^^^^
8032
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
8033
+ [rank7]: output_tensor, loss_func = forward_step_func(data_iterator, model)
8034
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8035
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
8036
+ [rank7]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
8037
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^^^
8038
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
8039
+ [rank7]: batch = next(global_batches)
8040
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^
8041
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
8042
+ [rank7]: attention_mask = torch.ones(
8043
+ [rank7]: ^^^^^^^^^^^
8044
+ [rank7]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
8045
+ [rank2]: Traceback (most recent call last):
8046
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
8047
+ [rank2]: pretrain(
8048
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
8049
+ [rank2]: iteration, num_floating_point_operations_so_far = train(
8050
+ [rank2]: ^^^^^^
8051
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
8052
+ [rank2]: ) = train_step(
8053
+ [rank2]: ^^^^^^^^^^^
8054
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
8055
+ [rank2]: losses_reduced = forward_backward_func(
8056
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^
8057
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
8058
+ [rank2]: output_tensor, num_tokens = forward_step(
8059
+ [rank2]: ^^^^^^^^^^^^^
8060
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
8061
+ [rank2]: output_tensor, loss_func = forward_step_func(data_iterator, model)
8062
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8063
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
8064
+ [rank2]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
8065
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^
8066
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
8067
+ [rank2]: batch = next(global_batches)
8068
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^
8069
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
8070
+ [rank2]: attention_mask = torch.ones(
8071
+ [rank2]: ^^^^^^^^^^^
8072
+ [rank2]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
8073
+ [rank0]: Traceback (most recent call last):
8074
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
8075
+ [rank0]: pretrain(
8076
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
8077
+ [rank0]: iteration, num_floating_point_operations_so_far = train(
8078
+ [rank0]: ^^^^^^
8079
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
8080
+ [rank0]: ) = train_step(
8081
+ [rank0]: ^^^^^^^^^^^
8082
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
8083
+ [rank0]: losses_reduced = forward_backward_func(
8084
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^
8085
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
8086
+ [rank0]: output_tensor, num_tokens = forward_step(
8087
+ [rank0]: ^^^^^^^^^^^^^
8088
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
8089
+ [rank0]: output_tensor, loss_func = forward_step_func(data_iterator, model)
8090
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8091
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
8092
+ [rank0]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
8093
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^
8094
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
8095
+ [rank0]: batch = next(global_batches)
8096
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^
8097
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
8098
+ [rank0]: attention_mask = torch.ones(
8099
+ [rank0]: ^^^^^^^^^^^
8100
+ [rank0]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
8101
+ [rank4]: Traceback (most recent call last):
8102
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
8103
+ [rank4]: pretrain(
8104
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
8105
+ [rank4]: iteration, num_floating_point_operations_so_far = train(
8106
+ [rank4]: ^^^^^^
8107
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
8108
+ [rank4]: ) = train_step(
8109
+ [rank4]: ^^^^^^^^^^^
8110
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
8111
+ [rank4]: losses_reduced = forward_backward_func(
8112
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^
8113
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
8114
+ [rank4]: output_tensor, num_tokens = forward_step(
8115
+ [rank4]: ^^^^^^^^^^^^^
8116
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
8117
+ [rank4]: output_tensor, loss_func = forward_step_func(data_iterator, model)
8118
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8119
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
8120
+ [rank4]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
8121
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^^^
8122
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
8123
+ [rank4]: batch = next(global_batches)
8124
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^
8125
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
8126
+ [rank4]: attention_mask = torch.ones(
8127
+ [rank4]: ^^^^^^^^^^^
8128
+ [rank4]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
8129
+ [rank3]: Traceback (most recent call last):
8130
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
8131
+ [rank3]: pretrain(
8132
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
8133
+ [rank3]: iteration, num_floating_point_operations_so_far = train(
8134
+ [rank3]: ^^^^^^
8135
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
8136
+ [rank3]: ) = train_step(
8137
+ [rank3]: ^^^^^^^^^^^
8138
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
8139
+ [rank3]: losses_reduced = forward_backward_func(
8140
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^
8141
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
8142
+ [rank3]: output_tensor, num_tokens = forward_step(
8143
+ [rank3]: ^^^^^^^^^^^^^
8144
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
8145
+ [rank3]: output_tensor, loss_func = forward_step_func(data_iterator, model)
8146
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8147
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
8148
+ [rank3]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
8149
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^
8150
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
8151
+ [rank3]: batch = next(global_batches)
8152
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^
8153
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
8154
+ [rank3]: attention_mask = torch.ones(
8155
+ [rank3]: ^^^^^^^^^^^
8156
+ [rank3]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
8157
+ [rank6]: Traceback (most recent call last):
8158
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
8159
+ [rank6]: pretrain(
8160
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
8161
+ [rank6]: iteration, num_floating_point_operations_so_far = train(
8162
+ [rank6]: ^^^^^^
8163
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
8164
+ [rank6]: ) = train_step(
8165
+ [rank6]: ^^^^^^^^^^^
8166
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
8167
+ [rank6]: losses_reduced = forward_backward_func(
8168
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^
8169
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
8170
+ [rank6]: output_tensor, num_tokens = forward_step(
8171
+ [rank6]: ^^^^^^^^^^^^^
8172
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
8173
+ [rank6]: output_tensor, loss_func = forward_step_func(data_iterator, model)
8174
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8175
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
8176
+ [rank6]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
8177
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^^^
8178
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
8179
+ [rank6]: batch = next(global_batches)
8180
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^
8181
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
8182
+ [rank6]: attention_mask = torch.ones(
8183
+ [rank6]: ^^^^^^^^^^^
8184
+ [rank6]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
8185
+ [rank1]:[W621 21:34:19.550684742 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
8186
+ [rank5]:[W621 21:34:19.574099654 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
8187
+ [rank3]:[W621 21:34:19.766926993 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
8188
+ [rank2]:[W621 21:34:19.818030378 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
8189
+ [rank7]:[W621 21:34:19.837059068 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
8190
+ [rank6]:[W621 21:34:19.883488558 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
8191
+ [rank4]:[W621 21:34:19.890447594 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
8192
+ W0621 21:34:20.496000 2320490 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2320578 closing signal SIGTERM
8193
+ W0621 21:34:20.499000 2320490 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2320580 closing signal SIGTERM
8194
+ W0621 21:34:20.499000 2320490 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2320581 closing signal SIGTERM
8195
+ W0621 21:34:20.499000 2320490 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2320582 closing signal SIGTERM
8196
+ W0621 21:34:20.500000 2320490 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2320583 closing signal SIGTERM
8197
+ W0621 21:34:20.500000 2320490 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2320584 closing signal SIGTERM
8198
+ W0621 21:34:20.500000 2320490 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2320585 closing signal SIGTERM
8199
+ E0621 21:34:20.928000 2320490 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 1 (pid: 2320579) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
8200
+ Traceback (most recent call last):
8201
+ File "<frozen runpy>", line 198, in _run_module_as_main
8202
+ File "<frozen runpy>", line 88, in _run_code
8203
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
8204
+ main()
8205
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
8206
+ return arg(*args, **kwargs)
8207
+ ^^^^^^^^^^^^^^^^^^^^
8208
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
8209
+ launch(args)
8210
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
8211
+ run(args)
8212
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
8213
+ elastic_launch(
8214
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
8215
+ return launch_agent(self._config, self._entrypoint, list(args))
8216
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8217
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
8218
+ raise ChildFailedError(
8219
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
8220
+ ============================================================
8221
+ ./pretrain_gpt_profile.py FAILED
8222
+ ------------------------------------------------------------
8223
+ Failures:
8224
+ <NO_OTHER_FAILURES>
8225
+ ------------------------------------------------------------
8226
+ Root Cause (first observed failure):
8227
+ [0]:
8228
+ time : 2025-06-21_21:34:20
8229
+ host : fs-mbz-gpu-791
8230
+ rank : 1 (local_rank: 1)
8231
+ exitcode : 1 (pid: 2320579)
8232
+ error_file: <N/A>
8233
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
8234
+ ============================================================
8235
+ + set +x
attnserver.run_attnserver.slurm.sh.343211.out.log CHANGED
@@ -10592,3 +10592,657 @@ CHECKPOINT_PATH: gpt-checkpoint
10592
  PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
10593
  --------------------------------
10594
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10592
  PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
10593
  --------------------------------
10594
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
10595
+ INFO:megatron.training.initialize:Setting logging level to 0
10596
+ INFO:megatron.training.initialize:Setting logging level to 0
10597
+ using world size: 8, data-parallel size: 1, context-parallel size: 1, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 8, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0
10598
+ Number of virtual stages per pipeline stage: None
10599
+ WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used
10600
+ using torch.float16 for parameters ...
10601
+ ------------------------ arguments ------------------------
10602
+ account_for_embedding_in_pipeline_split ......... False
10603
+ account_for_loss_in_pipeline_split .............. False
10604
+ accumulate_allreduce_grads_in_fp32 .............. False
10605
+ adam_beta1 ...................................... 0.9
10606
+ adam_beta2 ...................................... 0.999
10607
+ adam_eps ........................................ 1e-08
10608
+ add_bias_linear ................................. True
10609
+ add_position_embedding .......................... True
10610
+ add_qkv_bias .................................... True
10611
+ adlr_autoresume ................................. False
10612
+ adlr_autoresume_interval ........................ 1000
10613
+ align_grad_reduce ............................... True
10614
+ align_param_gather .............................. False
10615
+ app_tag_run_name ................................ None
10616
+ app_tag_run_version ............................. 0.0.0
10617
+ apply_layernorm_1p .............................. False
10618
+ apply_query_key_layer_scaling ................... False
10619
+ apply_residual_connection_post_layernorm ........ False
10620
+ apply_rope_fusion ............................... False
10621
+ async_save ...................................... None
10622
+ async_tensor_model_parallel_allreduce ........... True
10623
+ attention_backend ............................... AttnBackend.auto
10624
+ attention_dropout ............................... 0.1
10625
+ attention_softmax_in_fp32 ....................... False
10626
+ auto_detect_ckpt_format ......................... False
10627
+ barrier_with_L1_time ............................ True
10628
+ bert_binary_head ................................ True
10629
+ bert_embedder_type .............................. megatron
10630
+ bert_load ....................................... None
10631
+ bf16 ............................................ False
10632
+ bias_dropout_fusion ............................. True
10633
+ bias_gelu_fusion ................................ True
10634
+ bias_swiglu_fusion .............................. True
10635
+ biencoder_projection_dim ........................ 0
10636
+ biencoder_shared_query_context_model ............ False
10637
+ block_data_path ................................. None
10638
+ calc_ft_timeouts ................................ False
10639
+ calculate_per_token_loss ........................ False
10640
+ check_for_large_grads ........................... False
10641
+ check_for_nan_in_loss_and_grad .................. False
10642
+ check_for_spiky_loss ............................ False
10643
+ check_weight_hash_across_dp_replicas_interval ... None
10644
+ ckpt_assume_constant_structure .................. False
10645
+ ckpt_convert_format ............................. None
10646
+ ckpt_convert_save ............................... None
10647
+ ckpt_convert_update_legacy_dist_opt_format ...... False
10648
+ ckpt_format ..................................... torch_dist
10649
+ ckpt_fully_parallel_load ........................ False
10650
+ ckpt_fully_parallel_save ........................ True
10651
+ ckpt_fully_parallel_save_deprecated ............. False
10652
+ ckpt_step ....................................... None
10653
+ classes_fraction ................................ 1.0
10654
+ clip_grad ....................................... 1.0
10655
+ clone_scatter_output_in_embedding ............... True
10656
+ config_logger_dir ...............................
10657
+ consumed_train_samples .......................... 0
10658
+ consumed_valid_samples .......................... 0
10659
+ context_parallel_size ........................... 1
10660
+ cp_comm_type .................................... ['p2p']
10661
+ create_attention_mask_in_dataloader ............. True
10662
+ cross_entropy_fusion_impl ....................... native
10663
+ cross_entropy_loss_fusion ....................... False
10664
+ cuda_graph_scope ................................ full
10665
+ cuda_graph_warmup_steps ......................... 3
10666
+ data_args_path .................................. None
10667
+ data_cache_path ................................. None
10668
+ data_parallel_random_init ....................... False
10669
+ data_parallel_sharding_strategy ................. no_shard
10670
+ data_parallel_size .............................. 1
10671
+ data_path ....................................... None
10672
+ data_per_class_fraction ......................... 1.0
10673
+ data_sharding ................................... True
10674
+ dataloader_type ................................. single
10675
+ ddp_average_in_collective ....................... False
10676
+ ddp_bucket_size ................................. None
10677
+ ddp_num_buckets ................................. None
10678
+ ddp_pad_buckets_for_high_nccl_busbw ............. False
10679
+ decoder_first_pipeline_num_layers ............... None
10680
+ decoder_last_pipeline_num_layers ................ None
10681
+ decoder_num_layers .............................. None
10682
+ decoder_seq_length .............................. None
10683
+ decoupled_lr .................................... None
10684
+ decoupled_min_lr ................................ None
10685
+ decrease_batch_size_if_needed ................... False
10686
+ defer_embedding_wgrad_compute ................... False
10687
+ deprecated_use_mcore_models ..................... False
10688
+ deterministic_mode .............................. False
10689
+ dino_bottleneck_size ............................ 256
10690
+ dino_freeze_last_layer .......................... 1
10691
+ dino_head_hidden_size ........................... 2048
10692
+ dino_local_crops_number ......................... 10
10693
+ dino_local_img_size ............................. 96
10694
+ dino_norm_last_layer ............................ False
10695
+ dino_teacher_temp ............................... 0.07
10696
+ dino_warmup_teacher_temp ........................ 0.04
10697
+ dino_warmup_teacher_temp_epochs ................. 30
10698
+ disable_bf16_reduced_precision_matmul ........... False
10699
+ disable_mamba_mem_eff_path ...................... False
10700
+ disable_straggler_on_startup .................... False
10701
+ dist_ckpt_format_deprecated ..................... None
10702
+ dist_ckpt_strictness ............................ assume_ok_unexpected
10703
+ distribute_saved_activations .................... False
10704
+ distributed_backend ............................. nccl
10705
+ distributed_timeout_minutes ..................... 10
10706
+ embedding_path .................................. None
10707
+ empty_unused_memory_level ....................... 0
10708
+ enable_cuda_graph ............................... False
10709
+ enable_ft_package ............................... False
10710
+ enable_gloo_process_groups ...................... True
10711
+ enable_msc ...................................... True
10712
+ enable_one_logger ............................... True
10713
+ encoder_num_layers .............................. 2
10714
+ encoder_pipeline_model_parallel_size ............ 0
10715
+ encoder_seq_length .............................. 131072
10716
+ encoder_tensor_model_parallel_size .............. 0
10717
+ end_weight_decay ................................ 0.1
10718
+ eod_mask_loss ................................... False
10719
+ error_injection_rate ............................ 0
10720
+ error_injection_type ............................ transient_error
10721
+ eval_interval ................................... 16
10722
+ eval_iters ...................................... 1
10723
+ evidence_data_path .............................. None
10724
+ exit_duration_in_mins ........................... None
10725
+ exit_interval ................................... None
10726
+ exit_on_missing_checkpoint ...................... False
10727
+ exit_signal_handler ............................. False
10728
+ exp_avg_dtype ................................... torch.float32
10729
+ exp_avg_sq_dtype ................................ torch.float32
10730
+ expert_model_parallel_size ...................... 1
10731
+ expert_tensor_parallel_size ..................... 8
10732
+ external_cuda_graph ............................. False
10733
+ ffn_hidden_size ................................. 16384
10734
+ finetune ........................................ False
10735
+ first_last_layers_bf16 .......................... False
10736
+ flash_decode .................................... False
10737
+ fp16 ............................................ True
10738
+ fp16_lm_cross_entropy ........................... False
10739
+ fp32_residual_connection ........................ False
10740
+ fp8 ............................................. None
10741
+ fp8_amax_compute_algo ........................... most_recent
10742
+ fp8_amax_history_len ............................ 1
10743
+ fp8_interval .................................... 1
10744
+ fp8_margin ...................................... 0
10745
+ fp8_param_gather ................................ False
10746
+ fp8_recipe ...................................... delayed
10747
+ fp8_wgrad ....................................... True
10748
+ fsdp_double_buffer .............................. False
10749
+ global_batch_size ............................... 1
10750
+ grad_reduce_in_bf16 ............................. False
10751
+ gradient_accumulation_fusion .................... True
10752
+ gradient_reduce_div_fusion ...................... True
10753
+ group_query_attention ........................... True
10754
+ head_lr_mult .................................... 1.0
10755
+ heterogeneous_layers_config_encoded_json ........ None
10756
+ heterogeneous_layers_config_path ................ None
10757
+ hidden_dropout .................................. 0.1
10758
+ hidden_size ..................................... 4096
10759
+ hierarchical_context_parallel_sizes ............. None
10760
+ high_priority_stream_groups ..................... []
10761
+ hybrid_attention_ratio .......................... 0.0
10762
+ hybrid_mlp_ratio ................................ 0.0
10763
+ hybrid_override_pattern ......................... None
10764
+ hysteresis ...................................... 2
10765
+ ict_head_size ................................... None
10766
+ ict_load ........................................ None
10767
+ img_h ........................................... 224
10768
+ img_w ........................................... 224
10769
+ indexer_batch_size .............................. 128
10770
+ indexer_log_interval ............................ 1000
10771
+ inference_batch_times_seqlen_threshold .......... -1
10772
+ inference_dynamic_batching ...................... False
10773
+ inference_dynamic_batching_buffer_guaranteed_fraction 0.2
10774
+ inference_dynamic_batching_buffer_overflow_factor None
10775
+ inference_dynamic_batching_buffer_size_gb ....... 40.0
10776
+ inference_dynamic_batching_chunk_size ........... 256
10777
+ inference_dynamic_batching_max_requests_override None
10778
+ inference_dynamic_batching_max_tokens_override .. None
10779
+ inference_max_batch_size ........................ 8
10780
+ inference_max_seq_length ........................ 2560
10781
+ inference_rng_tracker ........................... False
10782
+ init_method_std ................................. 0.02
10783
+ init_method_xavier_uniform ...................... False
10784
+ init_model_with_meta_device ..................... False
10785
+ initial_loss_scale .............................. 4294967296
10786
+ inprocess_active_world_size ..................... 8
10787
+ inprocess_barrier_timeout ....................... 120
10788
+ inprocess_completion_timeout .................... 120
10789
+ inprocess_empty_cuda_cache ...................... False
10790
+ inprocess_granularity ........................... node
10791
+ inprocess_hard_timeout .......................... 90
10792
+ inprocess_heartbeat_interval .................... 30
10793
+ inprocess_heartbeat_timeout ..................... 60
10794
+ inprocess_last_call_wait ........................ 1
10795
+ inprocess_max_iterations ........................ None
10796
+ inprocess_monitor_process_interval .............. 1.0
10797
+ inprocess_monitor_thread_interval ............... 1.0
10798
+ inprocess_progress_watchdog_interval ............ 1.0
10799
+ inprocess_restart ............................... False
10800
+ inprocess_soft_timeout .......................... 60
10801
+ inprocess_termination_grace_time ................ 1
10802
+ is_hybrid_model ................................. False
10803
+ iter_per_epoch .................................. 1250
10804
+ iterations_to_skip .............................. []
10805
+ keep_fp8_transpose_cache_when_using_custom_fsdp . False
10806
+ kv_channels ..................................... 64
10807
+ kv_lora_rank .................................... 32
10808
+ lazy_mpu_init ................................... None
10809
+ load ............................................ gpt-checkpoint
10810
+ load_model_opt_format ........................... False
10811
+ local_rank ...................................... 0
10812
+ log_interval .................................... 1
10813
+ log_loss_scale_to_tensorboard ................... True
10814
+ log_memory_to_tensorboard ....................... False
10815
+ log_num_zeros_in_grad ........................... False
10816
+ log_params_norm ................................. False
10817
+ log_progress .................................... False
10818
+ log_straggler ................................... False
10819
+ log_throughput .................................. False
10820
+ log_timers_to_tensorboard ....................... False
10821
+ log_validation_ppl_to_tensorboard ............... False
10822
+ log_world_size_to_tensorboard ................... False
10823
+ logging_level ................................... 0
10824
+ loss_scale ...................................... None
10825
+ loss_scale_window ............................... 1000
10826
+ lr .............................................. 0.0005
10827
+ lr_decay_iters .................................. 150000
10828
+ lr_decay_samples ................................ None
10829
+ lr_decay_style .................................. cosine
10830
+ lr_warmup_fraction .............................. None
10831
+ lr_warmup_init .................................. 0.0
10832
+ lr_warmup_iters ................................. 2
10833
+ lr_warmup_samples ............................... 0
10834
+ lr_wsd_decay_iters .............................. None
10835
+ lr_wsd_decay_samples ............................ None
10836
+ lr_wsd_decay_style .............................. exponential
10837
+ main_grads_dtype ................................ torch.float32
10838
+ main_params_dtype ............................... torch.float32
10839
+ make_vocab_size_divisible_by .................... 128
10840
+ mamba_head_dim .................................. 64
10841
+ mamba_num_groups ................................ 8
10842
+ mamba_num_heads ................................. None
10843
+ mamba_state_dim ................................. 128
10844
+ manual_gc ....................................... False
10845
+ manual_gc_eval .................................. True
10846
+ manual_gc_interval .............................. 0
10847
+ mask_factor ..................................... 1.0
10848
+ mask_prob ....................................... 0.15
10849
+ mask_type ....................................... random
10850
+ masked_softmax_fusion ........................... True
10851
+ max_position_embeddings ......................... 131072
10852
+ max_tokens_to_oom ............................... 12000
10853
+ memory_snapshot_path ............................ snapshot.pickle
10854
+ merge_file ...................................... merges.txt
10855
+ micro_batch_size ................................ 1
10856
+ microbatch_group_size_per_vp_stage .............. None
10857
+ mid_level_dataset_surplus ....................... 0.005
10858
+ min_loss_scale .................................. 1.0
10859
+ min_lr .......................................... 0.0
10860
+ mlp_chunks_for_prefill .......................... 1
10861
+ mmap_bin_files .................................. True
10862
+ mock_data ....................................... True
10863
+ moe_apply_probs_on_input ........................ False
10864
+ moe_aux_loss_coeff .............................. 0.0
10865
+ moe_enable_deepep ............................... False
10866
+ moe_expert_capacity_factor ...................... None
10867
+ moe_extended_tp ................................. False
10868
+ moe_ffn_hidden_size ............................. None
10869
+ moe_grouped_gemm ................................ False
10870
+ moe_input_jitter_eps ............................ None
10871
+ moe_layer_freq .................................. 1
10872
+ moe_layer_recompute ............................. False
10873
+ moe_pad_expert_input_to_capacity ................ False
10874
+ moe_per_layer_logging ........................... False
10875
+ moe_permute_fusion .............................. False
10876
+ moe_router_bias_update_rate ..................... 0.001
10877
+ moe_router_dtype ................................ None
10878
+ moe_router_enable_expert_bias ................... False
10879
+ moe_router_force_load_balancing ................. False
10880
+ moe_router_group_topk ........................... None
10881
+ moe_router_load_balancing_type .................. aux_loss
10882
+ moe_router_num_groups ........................... None
10883
+ moe_router_padding_for_fp8 ...................... False
10884
+ moe_router_pre_softmax .......................... False
10885
+ moe_router_score_function ....................... softmax
10886
+ moe_router_topk ................................. 2
10887
+ moe_router_topk_scaling_factor .................. None
10888
+ moe_shared_expert_intermediate_size ............. None
10889
+ moe_shared_expert_overlap ....................... False
10890
+ moe_token_dispatcher_type ....................... allgather
10891
+ moe_token_drop_policy ........................... probs
10892
+ moe_use_legacy_grouped_gemm ..................... False
10893
+ moe_use_upcycling ............................... False
10894
+ moe_z_loss_coeff ................................ None
10895
+ mrope_section ................................... None
10896
+ mscale .......................................... 1.0
10897
+ mscale_all_dim .................................. 1.0
10898
+ mtp_loss_scaling_factor ......................... 0.1
10899
+ mtp_num_layers .................................. None
10900
+ multi_latent_attention .......................... False
10901
+ nccl_all_reduce_for_prefill ..................... False
10902
+ nccl_communicator_config_path ................... None
10903
+ nccl_ub ......................................... False
10904
+ no_load_optim ................................... None
10905
+ no_load_rng ..................................... None
10906
+ no_persist_layer_norm ........................... False
10907
+ no_rope_freq .................................... None
10908
+ no_save_optim ................................... None
10909
+ no_save_rng ..................................... None
10910
+ non_persistent_ckpt_type ........................ None
10911
+ non_persistent_global_ckpt_dir .................. None
10912
+ non_persistent_local_ckpt_algo .................. fully_parallel
10913
+ non_persistent_local_ckpt_dir ................... None
10914
+ non_persistent_save_interval .................... None
10915
+ norm_epsilon .................................... 1e-05
10916
+ normalization ................................... LayerNorm
10917
+ num_attention_heads ............................. 64
10918
+ num_channels .................................... 3
10919
+ num_classes ..................................... 1000
10920
+ num_dataset_builder_threads ..................... 1
10921
+ num_distributed_optimizer_instances ............. 1
10922
+ num_experts ..................................... None
10923
+ num_layers ...................................... 2
10924
+ num_layers_at_end_in_bf16 ....................... 1
10925
+ num_layers_at_start_in_bf16 ..................... 1
10926
+ num_layers_per_virtual_pipeline_stage ........... None
10927
+ num_query_groups ................................ 16
10928
+ num_virtual_stages_per_pipeline_rank ............ None
10929
+ num_workers ..................................... 2
10930
+ object_storage_cache_path ....................... None
10931
+ one_logger_async ................................ False
10932
+ one_logger_project .............................. megatron-lm
10933
+ one_logger_run_name ............................. None
10934
+ onnx_safe ....................................... None
10935
+ openai_gelu ..................................... False
10936
+ optimizer ....................................... adam
10937
+ optimizer_cpu_offload ........................... False
10938
+ optimizer_offload_fraction ...................... 1.0
10939
+ output_bert_embeddings .......................... False
10940
+ overlap_cpu_optimizer_d2h_h2d ................... False
10941
+ overlap_grad_reduce ............................. False
10942
+ overlap_p2p_comm ................................ False
10943
+ overlap_p2p_comm_warmup_flush ................... False
10944
+ overlap_param_gather ............................ False
10945
+ overlap_param_gather_with_optimizer_step ........ False
10946
+ override_opt_param_scheduler .................... False
10947
+ params_dtype .................................... torch.float16
10948
+ patch_dim ....................................... 16
10949
+ per_split_data_args_path ........................ None
10950
+ perform_initialization .......................... True
10951
+ pin_cpu_grads ................................... True
10952
+ pin_cpu_params .................................. True
10953
+ pipeline_model_parallel_comm_backend ............ None
10954
+ pipeline_model_parallel_size .................... 1
10955
+ pipeline_model_parallel_split_rank .............. None
10956
+ position_embedding_type ......................... learned_absolute
10957
+ pretrained_checkpoint ........................... None
10958
+ profile ......................................... False
10959
+ profile_ranks ................................... [0]
10960
+ profile_step_end ................................ 12
10961
+ profile_step_start .............................. 10
10962
+ q_lora_rank ..................................... None
10963
+ qk_head_dim ..................................... 128
10964
+ qk_l2_norm ...................................... False
10965
+ qk_layernorm .................................... False
10966
+ qk_pos_emb_head_dim ............................. 64
10967
+ query_in_block_prob ............................. 0.1
10968
+ rampup_batch_size ............................... None
10969
+ rank ............................................ 0
10970
+ recompute_granularity ........................... None
10971
+ recompute_method ................................ None
10972
+ recompute_modules ............................... None
10973
+ recompute_num_layers ............................ None
10974
+ record_memory_history ........................... False
10975
+ relative_attention_max_distance ................. 128
10976
+ relative_attention_num_buckets .................. 32
10977
+ replication ..................................... False
10978
+ replication_factor .............................. 2
10979
+ replication_jump ................................ None
10980
+ rerun_mode ...................................... disabled
10981
+ reset_attention_mask ............................ False
10982
+ reset_position_ids .............................. False
10983
+ result_rejected_tracker_filename ................ None
10984
+ retriever_report_topk_accuracies ................ []
10985
+ retriever_score_scaling ......................... False
10986
+ retriever_seq_length ............................ 256
10987
+ retro_add_retriever ............................. False
10988
+ retro_attention_gate ............................ 1
10989
+ retro_cyclic_train_iters ........................ None
10990
+ retro_encoder_attention_dropout ................. 0.1
10991
+ retro_encoder_hidden_dropout .................... 0.1
10992
+ retro_encoder_layers ............................ 2
10993
+ retro_num_neighbors ............................. 2
10994
+ retro_num_retrieved_chunks ...................... 2
10995
+ retro_project_dir ............................... None
10996
+ retro_verify_neighbor_count ..................... True
10997
+ rope_scaling_factor ............................. 8.0
10998
+ rotary_base ..................................... 10000
10999
+ rotary_interleaved .............................. False
11000
+ rotary_percent .................................. 1.0
11001
+ rotary_scaling_factor ........................... 1.0
11002
+ rotary_seq_len_interpolation_factor ............. None
11003
+ run_workload_inspector_server ................... False
11004
+ sample_rate ..................................... 1.0
11005
+ save ............................................ gpt-checkpoint
11006
+ save_interval ................................... 16
11007
+ scatter_gather_tensors_in_pipeline .............. True
11008
+ seed ............................................ 1234
11009
+ seq_length ...................................... 131072
11010
+ sequence_parallel ............................... False
11011
+ sgd_momentum .................................... 0.9
11012
+ short_seq_prob .................................. 0.1
11013
+ skip_train ...................................... False
11014
+ skipped_train_samples ........................... 0
11015
+ spec ............................................ None
11016
+ split ........................................... None
11017
+ squared_relu .................................... False
11018
+ start_weight_decay .............................. 0.1
11019
+ straggler_ctrlr_port ............................ 65535
11020
+ straggler_minmax_count .......................... 1
11021
+ suggested_communication_unit_size ............... None
11022
+ swiglu .......................................... False
11023
+ swin_backbone_type .............................. tiny
11024
+ symmetric_ar_type ............................... None
11025
+ te_rng_tracker .................................. False
11026
+ tensor_model_parallel_size ...................... 8
11027
+ tensorboard_dir ................................. tensorboard-logs/
11028
+ tensorboard_log_interval ........................ 1
11029
+ tensorboard_queue_size .......................... 1000
11030
+ test_data_path .................................. None
11031
+ test_mode ....................................... False
11032
+ tiktoken_num_special_tokens ..................... 1000
11033
+ tiktoken_pattern ................................ None
11034
+ tiktoken_special_tokens ......................... None
11035
+ timing_log_level ................................ 0
11036
+ timing_log_option ............................... minmax
11037
+ titles_data_path ................................ None
11038
+ tokenizer_model ................................. None
11039
+ tokenizer_type .................................. GPT2BPETokenizer
11040
+ torch_fsdp2_reshard_after_forward ............... True
11041
+ tp_comm_bootstrap_backend ....................... nccl
11042
+ tp_comm_bulk_dgrad .............................. True
11043
+ tp_comm_bulk_wgrad .............................. True
11044
+ tp_comm_overlap ................................. False
11045
+ tp_comm_overlap_ag .............................. True
11046
+ tp_comm_overlap_cfg ............................. None
11047
+ tp_comm_overlap_rs .............................. True
11048
+ tp_comm_overlap_rs_dgrad ........................ False
11049
+ tp_comm_split_ag ................................ True
11050
+ tp_comm_split_rs ................................ True
11051
+ train_data_path ................................. None
11052
+ train_iters ..................................... 10
11053
+ train_samples ................................... None
11054
+ train_sync_interval ............................. None
11055
+ transformer_impl ................................ transformer_engine
11056
+ transformer_pipeline_model_parallel_size ........ 1
11057
+ untie_embeddings_and_output_weights ............. False
11058
+ use_checkpoint_args ............................. False
11059
+ use_checkpoint_opt_param_scheduler .............. False
11060
+ use_cpu_initialization .......................... None
11061
+ use_custom_fsdp ................................. False
11062
+ use_dist_ckpt ................................... True
11063
+ use_dist_ckpt_deprecated ........................ False
11064
+ use_distributed_optimizer ....................... False
11065
+ use_flash_attn .................................. False
11066
+ use_legacy_models ............................... False
11067
+ use_mp_args_from_checkpoint_args ................ False
11068
+ use_one_sent_docs ............................... False
11069
+ use_persistent_ckpt_worker ...................... False
11070
+ use_precision_aware_optimizer ................... False
11071
+ use_pytorch_profiler ............................ False
11072
+ use_ring_exchange_p2p ........................... False
11073
+ use_rope_scaling ................................ False
11074
+ use_rotary_position_embeddings .................. False
11075
+ use_sharp ....................................... False
11076
+ use_tokenizer_model_from_checkpoint_args ........ True
11077
+ use_torch_fsdp2 ................................. False
11078
+ use_torch_optimizer_for_cpu_offload ............. False
11079
+ use_tp_pp_dp_mapping ............................ False
11080
+ v_head_dim ...................................... 128
11081
+ valid_data_path ................................. None
11082
+ variable_seq_lengths ............................ False
11083
+ virtual_pipeline_model_parallel_size ............ None
11084
+ vision_backbone_type ............................ vit
11085
+ vision_pretraining .............................. False
11086
+ vision_pretraining_type ......................... classify
11087
+ vocab_extra_ids ................................. 0
11088
+ vocab_file ...................................... vocab.json
11089
+ vocab_size ...................................... None
11090
+ wandb_exp_name ..................................
11091
+ wandb_project ...................................
11092
+ wandb_save_dir ..................................
11093
+ weight_decay .................................... 0.1
11094
+ weight_decay_incr_style ......................... constant
11095
+ wgrad_deferral_limit ............................ 0
11096
+ world_size ...................................... 8
11097
+ yaml_cfg ........................................ None
11098
+ -------------------- end of arguments ---------------------
11099
+ INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1
11100
+ > building GPT2BPETokenizer tokenizer ...
11101
+ INFO:megatron.training.initialize:Setting logging level to 0
11102
+ INFO:megatron.training.initialize:Setting logging level to 0
11103
+ INFO:megatron.training.initialize:Setting logging level to 0
11104
+ > padded vocab (size: 50257) with 943 dummy tokens (new size: 51200)
11105
+ INFO:megatron.training.initialize:Setting logging level to 0
11106
+ WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED
11107
+ > initializing torch distributed ...
11108
+ > initialized tensor model parallel with size 8
11109
+ > initialized pipeline model parallel with size 1
11110
+ > setting random seeds to 1234 ...
11111
+ > compiling dataset index builder ...
11112
+ make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
11113
+ WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written.
11114
+ WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it
11115
+ INFO:megatron.training.initialize:Setting logging level to 0
11116
+ INFO:megatron.training.initialize:Setting logging level to 0
11117
+ make: Nothing to be done for 'default'.
11118
+ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
11119
+ >>> done with dataset index builder. Compilation time: 0.052 seconds
11120
+ WARNING: constraints for invoking optimized fused softmax kernel are not met. We default back to unfused kernel invocations.
11121
+ > compiling and loading fused kernels ...
11122
+ >>> done with compiling and loading fused kernels. Compilation time: 2.659 seconds
11123
+ time to initialize megatron (seconds): 7.469
11124
+ [after megatron is initialized] datetime: 2025-06-21 21:34:12
11125
+ building GPT model ...
11126
+ >>> embedding
11127
+ >>> decoder
11128
+ >>> output_layer
11129
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 607188480
11130
+ >>> embedding
11131
+ >>> decoder
11132
+ >>> output_layer
11133
+ >>> embedding
11134
+ >>> decoder
11135
+ >>> output_layer
11136
+ > number of parameters on (tensor, pipeline) model parallel rank (7, 0): 607188480
11137
+ > number of parameters on (tensor, pipeline) model parallel rank (6, 0): 607188480
11138
+ >>> embedding
11139
+ >>> decoder
11140
+ >>> output_layer
11141
+ > number of parameters on (tensor, pipeline) model parallel rank (4, 0): 607188480
11142
+ >>> embedding
11143
+ >>> decoder
11144
+ >>> output_layer
11145
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 607188480
11146
+ >>> embedding
11147
+ >>> decoder
11148
+ >>> output_layer
11149
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 607188480
11150
+ >>> embedding
11151
+ >>> decoder
11152
+ >>> output_layer
11153
+ > number of parameters on (tensor, pipeline) model parallel rank (5, 0): 607188480
11154
+ >>> embedding
11155
+ >>> decoder
11156
+ >>> output_layer
11157
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 607188480
11158
+ INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False)
11159
+ INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1
11160
+ Params for bucket 1 (607188480 elements, 607188480 padded size):
11161
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight
11162
+ module.decoder.layers.1.self_attention.linear_qkv.bias
11163
+ module.decoder.layers.0.mlp.linear_fc2.bias
11164
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight
11165
+ module.decoder.layers.0.self_attention.linear_qkv.bias
11166
+ module.decoder.layers.1.mlp.linear_fc1.weight
11167
+ module.decoder.layers.0.mlp.linear_fc1.weight
11168
+ module.embedding.position_embeddings.weight
11169
+ module.embedding.word_embeddings.weight
11170
+ module.decoder.final_layernorm.bias
11171
+ module.decoder.layers.1.mlp.linear_fc2.bias
11172
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight
11173
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight
11174
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias
11175
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias
11176
+ module.decoder.layers.1.mlp.linear_fc1.bias
11177
+ module.decoder.final_layernorm.weight
11178
+ module.decoder.layers.0.mlp.linear_fc1.bias
11179
+ module.decoder.layers.1.self_attention.linear_qkv.weight
11180
+ module.decoder.layers.1.self_attention.linear_proj.weight
11181
+ module.decoder.layers.0.self_attention.linear_qkv.weight
11182
+ module.decoder.layers.0.self_attention.linear_proj.weight
11183
+ module.decoder.layers.1.mlp.linear_fc2.weight
11184
+ module.decoder.layers.1.self_attention.linear_proj.bias
11185
+ module.decoder.layers.0.self_attention.linear_proj.bias
11186
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias
11187
+ module.decoder.layers.0.mlp.linear_fc2.weight
11188
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias
11189
+ INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x14875ac0a5a0>, config_logger_dir='')
11190
+ INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
11191
+ WARNING: could not find the metadata file gpt-checkpoint/latest_checkpointed_iteration.txt
11192
+ will not load any checkpoints and will start from random
11193
+ (min, max) time across ranks (ms):
11194
+ load-checkpoint ................................: (2.80, 3.44)
11195
+ [after model, optimizer, and learning rate scheduler are built] datetime: 2025-06-21 21:34:17
11196
+ > building train, validation, and test datasets ...
11197
+ > datasets target sizes (minimum size):
11198
+ train: 10
11199
+ validation: 1
11200
+ test: 1
11201
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let mock = True, as both blend and blend_per_split are None
11202
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split = 1,1,1, an arbitrarily even split, as mock is True
11203
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split_matrix = [(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)]
11204
+ > building train, validation, and test datasets for GPT ...
11205
+ INFO:megatron.core.datasets.blended_megatron_dataset_builder:Building MockGPTDataset splits with sizes=(10, 1, 1) and config=GPTDatasetConfig(random_seed=1234, sequence_length=131072, blend=None, blend_per_split=None, split='1,1,1', split_matrix=[(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)], num_dataset_builder_threads=1, path_to_cache=None, mmap_bin_files=True, mock=True, tokenizer=<megatron.training.tokenizer.tokenizer._GPT2BPETokenizer object at 0x14875b604500>, mid_level_dataset_surplus=0.005, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, create_attention_mask=True, drop_last_partial_validation_sequence=True, add_extra_token_to_sequence=True, object_storage_cache_path=None)
11206
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset train indices
11207
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
11208
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
11209
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.006024 seconds
11210
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
11211
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
11212
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset valid indices
11213
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
11214
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
11215
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001700 seconds
11216
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
11217
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
11218
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset test indices
11219
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
11220
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
11221
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001455 seconds
11222
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
11223
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
11224
+ > finished creating GPT datasets ...
11225
+ [after dataloaders are built] datetime: 2025-06-21 21:34:17
11226
+ done with setup ...
11227
+ (min, max) time across ranks (ms):
11228
+ model-and-optimizer-setup ......................: (5690.89, 5707.90)
11229
+ train/valid/test-data-iterators-setup ..........: (17.61, 114.45)
11230
+ training ...
11231
+ Setting rerun_state_machine.current_iteration to 0...
11232
+ [before the start of training step] datetime: 2025-06-21 21:34:17
11233
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
11234
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
11235
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
11236
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
11237
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
11238
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
11239
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
11240
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
11241
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
11242
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
11243
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
11244
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
11245
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
11246
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
11247
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
11248
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 65536.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 132.22 GiB is free. Including non-PyTorch memory, this process has 7.59 GiB memory in use. Of the allocated memory 5.15 GiB is allocated by PyTorch, and 1007.51 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
attnserver.run_attnserver.slurm.sh.343213.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343214.err.log CHANGED
@@ -52461,3 +52461,642 @@ W0621 21:32:50.558000 4104401 site-packages/torch/distributed/run.py:766] ******
52461
  warnings.warn(
52462
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
52463
  warnings.warn(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52461
  warnings.warn(
52462
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
52463
  warnings.warn(
52464
+ [rank0]: Traceback (most recent call last):
52465
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
52466
+ [rank0]: pretrain(
52467
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
52468
+ [rank0]: save_checkpoint(
52469
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
52470
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
52471
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
52472
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
52473
+ [rank0]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
52474
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
52475
+ [rank0]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
52476
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
52477
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
52478
+ [rank0]: async_calls.maybe_finalize_async_calls(blocking=True)
52479
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
52480
+ [rank0]: finalize_fn()
52481
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
52482
+ [rank0]: save_state_dict_async_finalize(*save_state_dict_ret)
52483
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 243, in save_state_dict_async_finalize
52484
+ [rank0]: storage_writer.finish(global_metadata, all_results)
52485
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 483, in finish
52486
+ [rank0]: super().finish(metadata, results)
52487
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/checkpoint/filesystem.py", line 697, in finish
52488
+ [rank0]: with self.fs.create_stream(tmp_path, "wb") as metadata_file:
52489
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
52490
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/contextlib.py", line 137, in __enter__
52491
+ [rank0]: return next(self.gen)
52492
+ [rank0]: ^^^^^^^^^^^^^^
52493
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/checkpoint/filesystem.py", line 476, in create_stream
52494
+ [rank0]: with path.open(mode) as stream:
52495
+ [rank0]: ^^^^^^^^^^^^^^^
52496
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/pathlib.py", line 1013, in open
52497
+ [rank0]: return io.open(self, mode, buffering, encoding, errors, newline)
52498
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
52499
+ [rank0]: FileNotFoundError: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/.metadata.tmp'
52500
+ [rank0]:[W621 21:34:46.527885836 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
52501
+ W0621 21:34:54.005000 1985876 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1985950 closing signal SIGTERM
52502
+ W0621 21:34:54.009000 1985876 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1985951 closing signal SIGTERM
52503
+ W0621 21:34:54.012000 1985876 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1985952 closing signal SIGTERM
52504
+ W0621 21:34:54.015000 1985876 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1985953 closing signal SIGTERM
52505
+ W0621 21:34:54.017000 1985876 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1985954 closing signal SIGTERM
52506
+ W0621 21:34:54.022000 1985876 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1985955 closing signal SIGTERM
52507
+ W0621 21:34:54.024000 1985876 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1985956 closing signal SIGTERM
52508
+ E0621 21:34:57.069000 1985876 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 1985949) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
52509
+ Traceback (most recent call last):
52510
+ File "<frozen runpy>", line 198, in _run_module_as_main
52511
+ File "<frozen runpy>", line 88, in _run_code
52512
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
52513
+ main()
52514
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
52515
+ return arg(*args, **kwargs)
52516
+ ^^^^^^^^^^^^^^^^^^^^
52517
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
52518
+ launch(args)
52519
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
52520
+ run(args)
52521
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
52522
+ elastic_launch(
52523
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
52524
+ return launch_agent(self._config, self._entrypoint, list(args))
52525
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
52526
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
52527
+ raise ChildFailedError(
52528
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
52529
+ ============================================================
52530
+ ./pretrain_gpt_profile.py FAILED
52531
+ ------------------------------------------------------------
52532
+ Failures:
52533
+ <NO_OTHER_FAILURES>
52534
+ ------------------------------------------------------------
52535
+ Root Cause (first observed failure):
52536
+ [0]:
52537
+ time : 2025-06-21_21:34:54
52538
+ host : fs-mbz-gpu-404
52539
+ rank : 0 (local_rank: 0)
52540
+ exitcode : 1 (pid: 1985949)
52541
+ error_file: <N/A>
52542
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
52543
+ ============================================================
52544
+ [rank16]:[W621 21:34:57.576537020 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=75, addr=[fs-mbz-gpu-854]:38642, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52545
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52546
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x148305b785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52547
+ frame #1: <unknown function> + 0x5ba8afe (0x1482eee5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52548
+ frame #2: <unknown function> + 0x5baae40 (0x1482eee5ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52549
+ frame #3: <unknown function> + 0x5bab74a (0x1482eee5d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52550
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x1482eee571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52551
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x1482ac0509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52552
+ frame #6: <unknown function> + 0xd3b6d (0x14829c019b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52553
+ frame #7: <unknown function> + 0x94ac3 (0x148306edfac3 in /lib/x86_64-linux-gnu/libc.so.6)
52554
+ frame #8: <unknown function> + 0x126850 (0x148306f71850 in /lib/x86_64-linux-gnu/libc.so.6)
52555
+
52556
+ [rank16]:[W621 21:34:57.581204488 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 16] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52557
+ W0621 21:34:57.237000 531378 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 531465 closing signal SIGTERM
52558
+ W0621 21:34:57.242000 531378 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 531466 closing signal SIGTERM
52559
+ W0621 21:34:57.244000 531378 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 531467 closing signal SIGTERM
52560
+ W0621 21:34:57.248000 531378 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 531468 closing signal SIGTERM
52561
+ W0621 21:34:57.251000 531378 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 531469 closing signal SIGTERM
52562
+ W0621 21:34:57.253000 531378 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 531470 closing signal SIGTERM
52563
+ W0621 21:34:57.292000 531378 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 531471 closing signal SIGTERM
52564
+ W0621 21:34:57.298000 531378 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 531472 closing signal SIGTERM
52565
+ [rank28]:[W621 21:34:57.665013032 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-885]:43348, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52566
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52567
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14f6eb1785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52568
+ frame #1: <unknown function> + 0x5ba8afe (0x14f6d405aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52569
+ frame #2: <unknown function> + 0x5baae40 (0x14f6d405ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52570
+ frame #3: <unknown function> + 0x5bab74a (0x14f6d405d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52571
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x14f6d40571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52572
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x14f6912509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52573
+ frame #6: <unknown function> + 0xd3b6d (0x14f6eacf1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52574
+ frame #7: <unknown function> + 0x94ac3 (0x14f6ec26fac3 in /lib/x86_64-linux-gnu/libc.so.6)
52575
+ frame #8: <unknown function> + 0x126850 (0x14f6ec301850 in /lib/x86_64-linux-gnu/libc.so.6)
52576
+
52577
+ [rank28]:[W621 21:34:57.669596521 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 28] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52578
+ [rank12]:[W621 21:34:57.869922135 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-455]:53750, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52579
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52580
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x148fded785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52581
+ frame #1: <unknown function> + 0x5ba8afe (0x148fc805aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52582
+ frame #2: <unknown function> + 0x5baae40 (0x148fc805ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52583
+ frame #3: <unknown function> + 0x5bab74a (0x148fc805d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52584
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x148fc80571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52585
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x148f852509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52586
+ frame #6: <unknown function> + 0xd3b6d (0x148f75219b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52587
+ frame #7: <unknown function> + 0x94ac3 (0x148fe0152ac3 in /lib/x86_64-linux-gnu/libc.so.6)
52588
+ frame #8: <unknown function> + 0x126850 (0x148fe01e4850 in /lib/x86_64-linux-gnu/libc.so.6)
52589
+
52590
+ [rank12]:[W621 21:34:57.874271528 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 12] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52591
+ [rank10]:[W621 21:34:57.874073360 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-455]:53756, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52592
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52593
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x150b62d785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52594
+ frame #1: <unknown function> + 0x5ba8afe (0x150b4bc5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52595
+ frame #2: <unknown function> + 0x5baae40 (0x150b4bc5ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52596
+ frame #3: <unknown function> + 0x5bab74a (0x150b4bc5d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52597
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x150b4bc571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52598
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x150b08e509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52599
+ frame #6: <unknown function> + 0xd3b6d (0x150b628f1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52600
+ frame #7: <unknown function> + 0x94ac3 (0x150b63e3bac3 in /lib/x86_64-linux-gnu/libc.so.6)
52601
+ frame #8: <unknown function> + 0x126850 (0x150b63ecd850 in /lib/x86_64-linux-gnu/libc.so.6)
52602
+
52603
+ [rank10]:[W621 21:34:57.877925995 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 10] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52604
+ [rank14]:[W621 21:34:57.899028546 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-455]:53788, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52605
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52606
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x15301e5785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52607
+ frame #1: <unknown function> + 0x5ba8afe (0x15300785aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52608
+ frame #2: <unknown function> + 0x5baae40 (0x15300785ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52609
+ frame #3: <unknown function> + 0x5bab74a (0x15300785d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52610
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x1530078571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52611
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x152fc4a509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52612
+ frame #6: <unknown function> + 0xd3b6d (0x152fb4a19b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52613
+ frame #7: <unknown function> + 0x94ac3 (0x15301f902ac3 in /lib/x86_64-linux-gnu/libc.so.6)
52614
+ frame #8: <unknown function> + 0x126850 (0x15301f994850 in /lib/x86_64-linux-gnu/libc.so.6)
52615
+
52616
+ [rank14]:[W621 21:34:57.902839291 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 14] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52617
+ [rank9]:[W621 21:34:57.899087381 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-455]:53772, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52618
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52619
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14e199d785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52620
+ frame #1: <unknown function> + 0x5ba8afe (0x14e18305aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52621
+ frame #2: <unknown function> + 0x5baae40 (0x14e18305ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52622
+ frame #3: <unknown function> + 0x5bab74a (0x14e18305d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52623
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x14e1830571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52624
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x14e1402509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52625
+ frame #6: <unknown function> + 0xd3b6d (0x14e130219b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52626
+ frame #7: <unknown function> + 0x94ac3 (0x14e19b0b7ac3 in /lib/x86_64-linux-gnu/libc.so.6)
52627
+ frame #8: <unknown function> + 0x126850 (0x14e19b149850 in /lib/x86_64-linux-gnu/libc.so.6)
52628
+
52629
+ [rank9]:[W621 21:34:57.902984751 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 9] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52630
+ [rank11]:[W621 21:34:57.899081793 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-455]:53782, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52631
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52632
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x147d357785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52633
+ frame #1: <unknown function> + 0x5ba8afe (0x147d1e65aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52634
+ frame #2: <unknown function> + 0x5baae40 (0x147d1e65ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52635
+ frame #3: <unknown function> + 0x5bab74a (0x147d1e65d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52636
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x147d1e6571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52637
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x147cdb8509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52638
+ frame #6: <unknown function> + 0xd3b6d (0x147d352f1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52639
+ frame #7: <unknown function> + 0x94ac3 (0x147d367a2ac3 in /lib/x86_64-linux-gnu/libc.so.6)
52640
+ frame #8: <unknown function> + 0x126850 (0x147d36834850 in /lib/x86_64-linux-gnu/libc.so.6)
52641
+
52642
+ [rank11]:[W621 21:34:57.903365440 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 11] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52643
+ [rank15]:[W621 21:34:57.899453852 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-455]:53800, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52644
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52645
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1538c23785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52646
+ frame #1: <unknown function> + 0x5ba8afe (0x1538ab25aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52647
+ frame #2: <unknown function> + 0x5baae40 (0x1538ab25ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52648
+ frame #3: <unknown function> + 0x5bab74a (0x1538ab25d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52649
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x1538ab2571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52650
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x1538684509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52651
+ frame #6: <unknown function> + 0xd3b6d (0x1538c1ef1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52652
+ frame #7: <unknown function> + 0x94ac3 (0x1538c33edac3 in /lib/x86_64-linux-gnu/libc.so.6)
52653
+ frame #8: <unknown function> + 0x126850 (0x1538c347f850 in /lib/x86_64-linux-gnu/libc.so.6)
52654
+
52655
+ [rank15]:[W621 21:34:57.903456420 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 15] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52656
+ [rank13]:[W621 21:34:57.961938570 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-455]:53718, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52657
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52658
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1477a9d785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52659
+ frame #1: <unknown function> + 0x5ba8afe (0x147792c5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52660
+ frame #2: <unknown function> + 0x5baae40 (0x147792c5ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52661
+ frame #3: <unknown function> + 0x5bab74a (0x147792c5d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52662
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x147792c571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52663
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x14774fe509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52664
+ frame #6: <unknown function> + 0xd3b6d (0x1477a98f1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52665
+ frame #7: <unknown function> + 0x94ac3 (0x1477aae25ac3 in /lib/x86_64-linux-gnu/libc.so.6)
52666
+ frame #8: <unknown function> + 0x126850 (0x1477aaeb7850 in /lib/x86_64-linux-gnu/libc.so.6)
52667
+
52668
+ [rank13]:[W621 21:34:57.965338811 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 13] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52669
+ + set +x
52670
+ [rank24]:[W621 21:34:57.912642183 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=75, addr=[fs-mbz-gpu-885]:43302, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52671
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52672
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x152edc3785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52673
+ frame #1: <unknown function> + 0x5ba8afe (0x152ec525aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52674
+ frame #2: <unknown function> + 0x5baae40 (0x152ec525ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52675
+ frame #3: <unknown function> + 0x5bab74a (0x152ec525d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52676
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x152ec52571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52677
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x152e824509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52678
+ frame #6: <unknown function> + 0xd3b6d (0x152edbef1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52679
+ frame #7: <unknown function> + 0x94ac3 (0x152edd38fac3 in /lib/x86_64-linux-gnu/libc.so.6)
52680
+ frame #8: <unknown function> + 0x126850 (0x152edd421850 in /lib/x86_64-linux-gnu/libc.so.6)
52681
+
52682
+ [rank24]:[W621 21:34:57.916656457 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 24] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52683
+ [rank30]:[W621 21:34:57.083522265 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-885]:43354, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52684
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52685
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14afc35785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52686
+ frame #1: <unknown function> + 0x5ba8afe (0x14afac85aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52687
+ frame #2: <unknown function> + 0x5baae40 (0x14afac85ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52688
+ frame #3: <unknown function> + 0x5bab74a (0x14afac85d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52689
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x14afac8571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52690
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x14af69a509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52691
+ frame #6: <unknown function> + 0xd3b6d (0x14af59a19b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52692
+ frame #7: <unknown function> + 0x94ac3 (0x14afc48c6ac3 in /lib/x86_64-linux-gnu/libc.so.6)
52693
+ frame #8: <unknown function> + 0x126850 (0x14afc4958850 in /lib/x86_64-linux-gnu/libc.so.6)
52694
+
52695
+ [rank31]:[W621 21:34:57.083747837 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-885]:43314, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52696
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52697
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14c2f99785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52698
+ frame #1: <unknown function> + 0x5ba8afe (0x14c2e2c5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52699
+ frame #2: <unknown function> + 0x5baae40 (0x14c2e2c5ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52700
+ frame #3: <unknown function> + 0x5bab74a (0x14c2e2c5d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52701
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x14c2e2c571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52702
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x14c29fe509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52703
+ frame #6: <unknown function> + 0xd3b6d (0x14c28fe19b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52704
+ frame #7: <unknown function> + 0x94ac3 (0x14c2facffac3 in /lib/x86_64-linux-gnu/libc.so.6)
52705
+ frame #8: <unknown function> + 0x126850 (0x14c2fad91850 in /lib/x86_64-linux-gnu/libc.so.6)
52706
+
52707
+ [rank30]:[W621 21:34:57.087213933 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 30] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52708
+ [rank31]:[W621 21:34:57.087224855 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 31] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52709
+ [rank29]:[W621 21:34:57.098578029 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-885]:43334, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52710
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52711
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1472ce9785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52712
+ frame #1: <unknown function> + 0x5ba8afe (0x1472b785aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52713
+ frame #2: <unknown function> + 0x5baae40 (0x1472b785ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52714
+ frame #3: <unknown function> + 0x5bab74a (0x1472b785d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52715
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x1472b78571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52716
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x147274a509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52717
+ frame #6: <unknown function> + 0xd3b6d (0x1472ce4f1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52718
+ frame #7: <unknown function> + 0x94ac3 (0x1472cfa6cac3 in /lib/x86_64-linux-gnu/libc.so.6)
52719
+ frame #8: <unknown function> + 0x126850 (0x1472cfafe850 in /lib/x86_64-linux-gnu/libc.so.6)
52720
+
52721
+ [rank29]:[W621 21:34:57.103477933 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 29] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52722
+ W0621 21:34:57.972000 1707307 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1707377 closing signal SIGTERM
52723
+ W0621 21:34:57.976000 1707307 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1707378 closing signal SIGTERM
52724
+ W0621 21:34:57.979000 1707307 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1707379 closing signal SIGTERM
52725
+ W0621 21:34:57.983000 1707307 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1707380 closing signal SIGTERM
52726
+ W0621 21:34:57.986000 1707307 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1707381 closing signal SIGTERM
52727
+ W0621 21:34:58.000000 1707307 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1707382 closing signal SIGTERM
52728
+ [rank25]:[W621 21:34:57.368804395 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-885]:43362, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52729
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52730
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1496e77785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52731
+ frame #1: <unknown function> + 0x5ba8afe (0x1496d065aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52732
+ frame #2: <unknown function> + 0x5baae40 (0x1496d065ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52733
+ frame #3: <unknown function> + 0x5bab74a (0x1496d065d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52734
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x1496d06571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52735
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x14968d8509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52736
+ frame #6: <unknown function> + 0xd3b6d (0x1496e72f1b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52737
+ frame #7: <unknown function> + 0x94ac3 (0x1496e8869ac3 in /lib/x86_64-linux-gnu/libc.so.6)
52738
+ frame #8: <unknown function> + 0x126850 (0x1496e88fb850 in /lib/x86_64-linux-gnu/libc.so.6)
52739
+
52740
+ [rank27]:[W621 21:34:57.368764620 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-885]:43346, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52741
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52742
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x145943f785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52743
+ frame #1: <unknown function> + 0x5ba8afe (0x14592d25aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52744
+ frame #2: <unknown function> + 0x5baae40 (0x14592d25ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52745
+ frame #3: <unknown function> + 0x5bab74a (0x14592d25d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52746
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x14592d2571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52747
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x1458ea4509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52748
+ frame #6: <unknown function> + 0xd3b6d (0x1458da419b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52749
+ frame #7: <unknown function> + 0x94ac3 (0x14594530cac3 in /lib/x86_64-linux-gnu/libc.so.6)
52750
+ frame #8: <unknown function> + 0x126850 (0x14594539e850 in /lib/x86_64-linux-gnu/libc.so.6)
52751
+
52752
+ [rank26]:[W621 21:34:57.368978570 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=95, addr=[fs-mbz-gpu-885]:43326, remote=[fs-mbz-gpu-404]:44033): failed to recv, got 0 bytes
52753
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
52754
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14a75a9785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52755
+ frame #1: <unknown function> + 0x5ba8afe (0x14a743c5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52756
+ frame #2: <unknown function> + 0x5baae40 (0x14a743c5ce40 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52757
+ frame #3: <unknown function> + 0x5bab74a (0x14a743c5d74a in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52758
+ frame #4: c10d::TCPStore::check(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&) + 0x2a9 (0x14a743c571a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52759
+ frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x14a700e509a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cuda.so)
52760
+ frame #6: <unknown function> + 0xd3b6d (0x14a6f0e19b6d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/../lib/libstdc++.so.6)
52761
+ frame #7: <unknown function> + 0x94ac3 (0x14a75bc92ac3 in /lib/x86_64-linux-gnu/libc.so.6)
52762
+ frame #8: <unknown function> + 0x126850 (0x14a75bd24850 in /lib/x86_64-linux-gnu/libc.so.6)
52763
+
52764
+ [rank25]:[W621 21:34:58.373039383 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 25] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52765
+ [rank27]:[W621 21:34:58.373055748 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 27] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52766
+ [rank26]:[W621 21:34:58.373077485 ProcessGroupNCCL.cpp:1659] [PG ID 0 PG GUID 0(default_pg) Rank 26] Failed to check the "should dump" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes
52767
+ W0621 21:34:58.006000 1707307 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1707383 closing signal SIGTERM
52768
+ W0621 21:34:58.009000 1707307 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1707384 closing signal SIGTERM
52769
+ W0621 21:34:58.017000 4104401 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 4104471 closing signal SIGTERM
52770
+ W0621 21:34:58.020000 4104401 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 4104472 closing signal SIGTERM
52771
+ W0621 21:34:58.024000 4104401 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 4104473 closing signal SIGTERM
52772
+ W0621 21:34:58.027000 4104401 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 4104474 closing signal SIGTERM
52773
+ W0621 21:34:58.029000 4104401 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 4104475 closing signal SIGTERM
52774
+ W0621 21:34:58.042000 4104401 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 4104476 closing signal SIGTERM
52775
+ W0621 21:34:58.077000 4104401 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 4104477 closing signal SIGTERM
52776
+ W0621 21:34:58.080000 4104401 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 4104478 closing signal SIGTERM
52777
+ [W621 21:35:00.096795323 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=4, addr=[fs-mbz-gpu-854]:33410, remote=[fs-mbz-gpu-404]:29500): Broken pipe
52778
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
52779
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1536d6f785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52780
+ frame #1: <unknown function> + 0x5ba8afe (0x1536bfe5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52781
+ frame #2: <unknown function> + 0x5baa358 (0x1536bfe5c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52782
+ frame #3: <unknown function> + 0x5babb3e (0x1536bfe5db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52783
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x1536bfe57ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52784
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x1536bfe57ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52785
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x1536bfe58f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52786
+ frame #7: <unknown function> + 0xc0f526 (0x1536cf18b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
52787
+ frame #8: <unknown function> + 0x37f17d (0x1536ce8fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
52788
+ <omitting python frames>
52789
+ frame #26: <unknown function> + 0x29d90 (0x1536d7f76d90 in /lib/x86_64-linux-gnu/libc.so.6)
52790
+ frame #27: __libc_start_main + 0x80 (0x1536d7f76e40 in /lib/x86_64-linux-gnu/libc.so.6)
52791
+
52792
+ W0621 21:35:00.737000 531378 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-854_531378_0' has failed to shutdown the rendezvous '343214' due to an error of type RendezvousConnectionError.
52793
+ [W621 21:35:00.112410584 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=4, addr=[fs-mbz-gpu-854]:33410, remote=[fs-mbz-gpu-404]:29500): Broken pipe
52794
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
52795
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1536d6f785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52796
+ frame #1: <unknown function> + 0x5ba8afe (0x1536bfe5aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52797
+ frame #2: <unknown function> + 0x5baa358 (0x1536bfe5c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52798
+ frame #3: <unknown function> + 0x5babb3e (0x1536bfe5db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52799
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x1536bfe57ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52800
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x1536bfe57ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52801
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x1536bfe58f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52802
+ frame #7: <unknown function> + 0xc0f526 (0x1536cf18b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
52803
+ frame #8: <unknown function> + 0x37f17d (0x1536ce8fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
52804
+ <omitting python frames>
52805
+ frame #26: <unknown function> + 0x29d90 (0x1536d7f76d90 in /lib/x86_64-linux-gnu/libc.so.6)
52806
+ frame #27: __libc_start_main + 0x80 (0x1536d7f76e40 in /lib/x86_64-linux-gnu/libc.so.6)
52807
+
52808
+ W0621 21:35:00.750000 531378 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-854_531378_0' has failed to shutdown the rendezvous '343214' due to an error of type RendezvousConnectionError.
52809
+ Traceback (most recent call last):
52810
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 117, in _call_store
52811
+ return getattr(self._store, store_op)(*args, **kwargs)
52812
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
52813
+ torch.distributed.DistNetworkError: failed to recv, got 0 bytes
52814
+
52815
+ The above exception was the direct cause of the following exception:
52816
+
52817
+ Traceback (most recent call last):
52818
+ File "<frozen runpy>", line 198, in _run_module_as_main
52819
+ File "<frozen runpy>", line 88, in _run_code
52820
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
52821
+ main()
52822
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
52823
+ return arg(*args, **kwargs)
52824
+ ^^^^^^^^^^^^^^^^^^^^
52825
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
52826
+ launch(args)
52827
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
52828
+ run(args)
52829
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
52830
+ elastic_launch(
52831
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
52832
+ return launch_agent(self._config, self._entrypoint, list(args))
52833
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
52834
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 261, in launch_agent
52835
+ result = agent.run()
52836
+ ^^^^^^^^^^^
52837
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/metrics/api.py", line 138, in wrapper
52838
+ result = f(*args, **kwargs)
52839
+ ^^^^^^^^^^^^^^^^^^
52840
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 711, in run
52841
+ result = self._invoke_run(role)
52842
+ ^^^^^^^^^^^^^^^^^^^^^^
52843
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 906, in _invoke_run
52844
+ num_nodes_waiting = rdzv_handler.num_nodes_waiting()
52845
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
52846
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1263, in num_nodes_waiting
52847
+ self._state_holder.sync()
52848
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 437, in sync
52849
+ get_response = self._backend.get_state()
52850
+ ^^^^^^^^^^^^^^^^^^^^^^^^^
52851
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 75, in get_state
52852
+ base64_state: bytes = self._call_store("get", self._key)
52853
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
52854
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 119, in _call_store
52855
+ raise RendezvousConnectionError(
52856
+ torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
52857
+ + set +x
52858
+ [W621 21:35:01.116819207 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-455]:54080, remote=[fs-mbz-gpu-404]:29500): Broken pipe
52859
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
52860
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1551d73785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52861
+ frame #1: <unknown function> + 0x5ba8afe (0x1551c065aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52862
+ frame #2: <unknown function> + 0x5baa358 (0x1551c065c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52863
+ frame #3: <unknown function> + 0x5babb3e (0x1551c065db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52864
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x1551c0657ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52865
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x1551c0657ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52866
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x1551c0658f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52867
+ frame #7: <unknown function> + 0xc0f526 (0x1551cf98b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
52868
+ frame #8: <unknown function> + 0x37f17d (0x1551cf0fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
52869
+ <omitting python frames>
52870
+ frame #26: <unknown function> + 0x29d90 (0x1551d86f6d90 in /lib/x86_64-linux-gnu/libc.so.6)
52871
+ frame #27: __libc_start_main + 0x80 (0x1551d86f6e40 in /lib/x86_64-linux-gnu/libc.so.6)
52872
+
52873
+ W0621 21:35:01.576000 1707307 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-455_1707307_0' has failed to shutdown the rendezvous '343214' due to an error of type RendezvousConnectionError.
52874
+ [W621 21:35:01.132761949 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-455]:54080, remote=[fs-mbz-gpu-404]:29500): Broken pipe
52875
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
52876
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1551d73785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52877
+ frame #1: <unknown function> + 0x5ba8afe (0x1551c065aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52878
+ frame #2: <unknown function> + 0x5baa358 (0x1551c065c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52879
+ frame #3: <unknown function> + 0x5babb3e (0x1551c065db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52880
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x1551c0657ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52881
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x1551c0657ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52882
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x1551c0658f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52883
+ frame #7: <unknown function> + 0xc0f526 (0x1551cf98b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
52884
+ frame #8: <unknown function> + 0x37f17d (0x1551cf0fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
52885
+ <omitting python frames>
52886
+ frame #26: <unknown function> + 0x29d90 (0x1551d86f6d90 in /lib/x86_64-linux-gnu/libc.so.6)
52887
+ frame #27: __libc_start_main + 0x80 (0x1551d86f6e40 in /lib/x86_64-linux-gnu/libc.so.6)
52888
+
52889
+ W0621 21:35:01.589000 1707307 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-455_1707307_0' has failed to shutdown the rendezvous '343214' due to an error of type RendezvousConnectionError.
52890
+ Traceback (most recent call last):
52891
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 117, in _call_store
52892
+ return getattr(self._store, store_op)(*args, **kwargs)
52893
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
52894
+ torch.distributed.DistNetworkError: failed to recv, got 0 bytes
52895
+
52896
+ The above exception was the direct cause of the following exception:
52897
+
52898
+ Traceback (most recent call last):
52899
+ File "<frozen runpy>", line 198, in _run_module_as_main
52900
+ File "<frozen runpy>", line 88, in _run_code
52901
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
52902
+ main()
52903
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
52904
+ return arg(*args, **kwargs)
52905
+ ^^^^^^^^^^^^^^^^^^^^
52906
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
52907
+ launch(args)
52908
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
52909
+ run(args)
52910
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
52911
+ elastic_launch(
52912
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
52913
+ return launch_agent(self._config, self._entrypoint, list(args))
52914
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
52915
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 261, in launch_agent
52916
+ result = agent.run()
52917
+ ^^^^^^^^^^^
52918
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/metrics/api.py", line 138, in wrapper
52919
+ result = f(*args, **kwargs)
52920
+ ^^^^^^^^^^^^^^^^^^
52921
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 711, in run
52922
+ result = self._invoke_run(role)
52923
+ ^^^^^^^^^^^^^^^^^^^^^^
52924
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 906, in _invoke_run
52925
+ num_nodes_waiting = rdzv_handler.num_nodes_waiting()
52926
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
52927
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1263, in num_nodes_waiting
52928
+ self._state_holder.sync()
52929
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 437, in sync
52930
+ get_response = self._backend.get_state()
52931
+ ^^^^^^^^^^^^^^^^^^^^^^^^^
52932
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 75, in get_state
52933
+ base64_state: bytes = self._call_store("get", self._key)
52934
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
52935
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 119, in _call_store
52936
+ raise RendezvousConnectionError(
52937
+ torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
52938
+ + set +x
52939
+ [W621 21:35:01.356306678 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-885]:35212, remote=[fs-mbz-gpu-404]:29500): Broken pipe
52940
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
52941
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x15000f1785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52942
+ frame #1: <unknown function> + 0x5ba8afe (0x14fff845aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52943
+ frame #2: <unknown function> + 0x5baa358 (0x14fff845c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52944
+ frame #3: <unknown function> + 0x5babb3e (0x14fff845db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52945
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14fff8457ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52946
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14fff8457ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52947
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14fff8458f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52948
+ frame #7: <unknown function> + 0xc0f526 (0x15000778b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
52949
+ frame #8: <unknown function> + 0x37f17d (0x150006efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
52950
+ <omitting python frames>
52951
+ frame #17: <unknown function> + 0x94ac3 (0x15001057dac3 in /lib/x86_64-linux-gnu/libc.so.6)
52952
+ frame #18: <unknown function> + 0x126850 (0x15001060f850 in /lib/x86_64-linux-gnu/libc.so.6)
52953
+
52954
+ W0621 21:35:01.995000 4104401 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1341] The node 'fs-mbz-gpu-885_4104401_0' has failed to send a keep-alive heartbeat to the rendezvous '343214' due to an error of type RendezvousConnectionError.
52955
+ [W621 21:35:02.398091749 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-885]:35212, remote=[fs-mbz-gpu-404]:29500): Broken pipe
52956
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
52957
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x15000f1785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52958
+ frame #1: <unknown function> + 0x5ba8afe (0x14fff845aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52959
+ frame #2: <unknown function> + 0x5baa358 (0x14fff845c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52960
+ frame #3: <unknown function> + 0x5babb3e (0x14fff845db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52961
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14fff8457ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52962
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14fff8457ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52963
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14fff8458f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52964
+ frame #7: <unknown function> + 0xc0f526 (0x15000778b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
52965
+ frame #8: <unknown function> + 0x37f17d (0x150006efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
52966
+ <omitting python frames>
52967
+ frame #26: <unknown function> + 0x29d90 (0x150010512d90 in /lib/x86_64-linux-gnu/libc.so.6)
52968
+ frame #27: __libc_start_main + 0x80 (0x150010512e40 in /lib/x86_64-linux-gnu/libc.so.6)
52969
+
52970
+ W0621 21:35:02.043000 4104401 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-885_4104401_0' has failed to shutdown the rendezvous '343214' due to an error of type RendezvousConnectionError.
52971
+ [W621 21:35:02.412874338 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-885]:35212, remote=[fs-mbz-gpu-404]:29500): Broken pipe
52972
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
52973
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x15000f1785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
52974
+ frame #1: <unknown function> + 0x5ba8afe (0x14fff845aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52975
+ frame #2: <unknown function> + 0x5baa358 (0x14fff845c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52976
+ frame #3: <unknown function> + 0x5babb3e (0x14fff845db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52977
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14fff8457ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52978
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14fff8457ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52979
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14fff8458f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
52980
+ frame #7: <unknown function> + 0xc0f526 (0x15000778b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
52981
+ frame #8: <unknown function> + 0x37f17d (0x150006efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
52982
+ <omitting python frames>
52983
+ frame #26: <unknown function> + 0x29d90 (0x150010512d90 in /lib/x86_64-linux-gnu/libc.so.6)
52984
+ frame #27: __libc_start_main + 0x80 (0x150010512e40 in /lib/x86_64-linux-gnu/libc.so.6)
52985
+
52986
+ W0621 21:35:02.055000 4104401 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-885_4104401_0' has failed to shutdown the rendezvous '343214' due to an error of type RendezvousConnectionError.
52987
+ Traceback (most recent call last):
52988
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 117, in _call_store
52989
+ return getattr(self._store, store_op)(*args, **kwargs)
52990
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
52991
+ torch.distributed.DistNetworkError: failed to recv, got 0 bytes
52992
+
52993
+ The above exception was the direct cause of the following exception:
52994
+
52995
+ Traceback (most recent call last):
52996
+ File "<frozen runpy>", line 198, in _run_module_as_main
52997
+ File "<frozen runpy>", line 88, in _run_code
52998
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
52999
+ main()
53000
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
53001
+ return arg(*args, **kwargs)
53002
+ ^^^^^^^^^^^^^^^^^^^^
53003
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
53004
+ launch(args)
53005
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
53006
+ run(args)
53007
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
53008
+ elastic_launch(
53009
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
53010
+ return launch_agent(self._config, self._entrypoint, list(args))
53011
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
53012
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 261, in launch_agent
53013
+ result = agent.run()
53014
+ ^^^^^^^^^^^
53015
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/metrics/api.py", line 138, in wrapper
53016
+ result = f(*args, **kwargs)
53017
+ ^^^^^^^^^^^^^^^^^^
53018
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 711, in run
53019
+ result = self._invoke_run(role)
53020
+ ^^^^^^^^^^^^^^^^^^^^^^
53021
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 906, in _invoke_run
53022
+ num_nodes_waiting = rdzv_handler.num_nodes_waiting()
53023
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
53024
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1263, in num_nodes_waiting
53025
+ self._state_holder.sync()
53026
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 437, in sync
53027
+ get_response = self._backend.get_state()
53028
+ ^^^^^^^^^^^^^^^^^^^^^^^^^
53029
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 75, in get_state
53030
+ base64_state: bytes = self._call_store("get", self._key)
53031
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
53032
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 119, in _call_store
53033
+ raise RendezvousConnectionError(
53034
+ torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
53035
+ + set +x
53036
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
53037
+ + export PROF_CTX_LENGTH=32768
53038
+ + PROF_CTX_LENGTH=32768
53039
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L32768*tp4.cp8.bs2.json'
53040
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L32768*tp4.cp8.bs2.json' ']'
53041
+ + echo 'Running ctx_length=32768, TP_SIZE=4, CP_SIZE=8, BATCH_SIZE=2'
53042
+ + srun bash ./attnserver.sh
53043
+ + which python3
53044
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 2 --rdzv_id 343214 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-404:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 32768 --max-position-embeddings 32768 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
53045
+ + which python3
53046
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 1 --rdzv_id 343214 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-404:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 32768 --max-position-embeddings 32768 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
53047
+ + which python3
53048
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 0 --rdzv_id 343214 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-404:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 32768 --max-position-embeddings 32768 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
53049
+ + which python3
53050
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 4 --node_rank 3 --rdzv_id 343214 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-404:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 32768 --max-position-embeddings 32768 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
53051
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
53052
+ and will be removed in future. Use torchrun.
53053
+ Note that --use-env is set by default in torchrun.
53054
+ If your script expects `--local-rank` argument to be set, please
53055
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
53056
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
53057
+ further instructions
53058
+
53059
+ main()
53060
+ W0621 21:35:05.148000 1710457 site-packages/torch/distributed/run.py:766]
53061
+ W0621 21:35:05.148000 1710457 site-packages/torch/distributed/run.py:766] *****************************************
53062
+ W0621 21:35:05.148000 1710457 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
53063
+ W0621 21:35:05.148000 1710457 site-packages/torch/distributed/run.py:766] *****************************************
53064
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
53065
+ and will be removed in future. Use torchrun.
53066
+ Note that --use-env is set by default in torchrun.
53067
+ If your script expects `--local-rank` argument to be set, please
53068
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
53069
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
53070
+ further instructions
53071
+
53072
+ main()
53073
+ W0621 21:35:05.221000 4107424 site-packages/torch/distributed/run.py:766]
53074
+ W0621 21:35:05.221000 4107424 site-packages/torch/distributed/run.py:766] *****************************************
53075
+ W0621 21:35:05.221000 4107424 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
53076
+ W0621 21:35:05.221000 4107424 site-packages/torch/distributed/run.py:766] *****************************************
53077
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
53078
+ and will be removed in future. Use torchrun.
53079
+ Note that --use-env is set by default in torchrun.
53080
+ If your script expects `--local-rank` argument to be set, please
53081
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
53082
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
53083
+ further instructions
53084
+
53085
+ main()
53086
+ W0621 21:35:05.226000 534532 site-packages/torch/distributed/run.py:766]
53087
+ W0621 21:35:05.226000 534532 site-packages/torch/distributed/run.py:766] *****************************************
53088
+ W0621 21:35:05.226000 534532 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
53089
+ W0621 21:35:05.226000 534532 site-packages/torch/distributed/run.py:766] *****************************************
53090
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
53091
+ and will be removed in future. Use torchrun.
53092
+ Note that --use-env is set by default in torchrun.
53093
+ If your script expects `--local-rank` argument to be set, please
53094
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
53095
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
53096
+ further instructions
53097
+
53098
+ main()
53099
+ W0621 21:35:05.233000 1988993 site-packages/torch/distributed/run.py:766]
53100
+ W0621 21:35:05.233000 1988993 site-packages/torch/distributed/run.py:766] *****************************************
53101
+ W0621 21:35:05.233000 1988993 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
53102
+ W0621 21:35:05.233000 1988993 site-packages/torch/distributed/run.py:766] *****************************************
attnserver.run_attnserver.slurm.sh.343214.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343219.err.log CHANGED
@@ -6473,3 +6473,58 @@ W0621 21:33:10.159000 3529303 site-packages/torch/distributed/run.py:766] ******
6473
  warnings.warn(
6474
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6475
  warnings.warn(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6473
  warnings.warn(
6474
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6475
  warnings.warn(
6476
+ [rank2]:[W621 21:34:40.686871147 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6477
+ [rank3]:[W621 21:34:40.708866684 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6478
+ [rank1]:[W621 21:34:40.764404297 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6479
+ [rank0]:[W621 21:34:41.016499701 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6480
+ [rank15]:[W621 21:34:41.991150391 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6481
+ [rank5]:[W621 21:34:41.088710900 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6482
+ [rank4]:[W621 21:34:41.111867956 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6483
+ [rank13]:[W621 21:34:41.134323163 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6484
+ [rank8]:[W621 21:34:41.147553016 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6485
+ [rank14]:[W621 21:34:41.154468886 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6486
+ [rank6]:[W621 21:34:41.270055586 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6487
+ [rank10]:[W621 21:34:41.436563221 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6488
+ [rank9]:[W621 21:34:41.446638720 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6489
+ [rank11]:[W621 21:34:41.475402518 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6490
+ [rank7]:[W621 21:34:41.561073154 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6491
+ [rank12]:[W621 21:34:41.631388371 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6492
+ + set +x
6493
+ + set +x
6494
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
6495
+ + export PROF_CTX_LENGTH=40960
6496
+ + PROF_CTX_LENGTH=40960
6497
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L40960*tp4.cp4.bs1.json'
6498
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L40960*tp4.cp4.bs1.json' ']'
6499
+ + echo 'Running ctx_length=40960, TP_SIZE=4, CP_SIZE=4, BATCH_SIZE=1'
6500
+ + srun bash ./attnserver.sh
6501
+ + which python3
6502
+ + which python3
6503
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 0 --rdzv_id 343219 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-514:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 40960 --max-position-embeddings 40960 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
6504
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 1 --rdzv_id 343219 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-514:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 40960 --max-position-embeddings 40960 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
6505
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
6506
+ and will be removed in future. Use torchrun.
6507
+ Note that --use-env is set by default in torchrun.
6508
+ If your script expects `--local-rank` argument to be set, please
6509
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
6510
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
6511
+ further instructions
6512
+
6513
+ main()
6514
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
6515
+ and will be removed in future. Use torchrun.
6516
+ Note that --use-env is set by default in torchrun.
6517
+ If your script expects `--local-rank` argument to be set, please
6518
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
6519
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
6520
+ further instructions
6521
+
6522
+ main()
6523
+ W0621 21:34:50.442000 3532790 site-packages/torch/distributed/run.py:766]
6524
+ W0621 21:34:50.442000 3532790 site-packages/torch/distributed/run.py:766] *****************************************
6525
+ W0621 21:34:50.442000 3532790 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
6526
+ W0621 21:34:50.442000 3532790 site-packages/torch/distributed/run.py:766] *****************************************
6527
+ W0621 21:34:50.443000 3185485 site-packages/torch/distributed/run.py:766]
6528
+ W0621 21:34:50.443000 3185485 site-packages/torch/distributed/run.py:766] *****************************************
6529
+ W0621 21:34:50.443000 3185485 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
6530
+ W0621 21:34:50.443000 3185485 site-packages/torch/distributed/run.py:766] *****************************************
attnserver.run_attnserver.slurm.sh.343219.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343220.out.log CHANGED
@@ -16942,3 +16942,1168 @@ batch tensor after cp: labels torch.Size([2, 20480])
16942
  batch tensor after cp: loss_mask torch.Size([2, 20480])
16943
  batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
16944
  batch tensor after cp: position_ids torch.Size([2, 20480])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16942
  batch tensor after cp: loss_mask torch.Size([2, 20480])
16943
  batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
16944
  batch tensor after cp: position_ids torch.Size([2, 20480])
16945
+ Start exporting trace 0
16946
+ Done exporting trace 0
16947
+ Number of parameters in transformer block in billions: 0.35
16948
+ Number of parameters in embedding layers in billions: 0.21
16949
+ Total number of parameters in billions: 0.56
16950
+ Number of parameters in most loaded shard in billions: 0.1400
16951
+ Theoretical memory footprints: weight and optimizer=2403.18 MB
16952
+ [Rank 2] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28584.0 | max reserved: 28584.0
16953
+ [2025-06-21 21:34:09] iteration 1/ 10 | consumed samples: 1 | elapsed time per iteration (ms): 32305.9 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 4294967296.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
16954
+ [Rank 7] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28624.0 | max reserved: 28624.0
16955
+ [Rank 10] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28684.0 | max reserved: 28684.0[Rank 11] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28684.0 | max reserved: 28684.0
16956
+
16957
+ [Rank 13] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28704.0 | max reserved: 28704.0[Rank 14] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28704.0 | max reserved: 28704.0
16958
+
16959
+ [Rank 3] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28584.0 | max reserved: 28584.0
16960
+ [Rank 15] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28704.0 | max reserved: 28704.0
16961
+ [Rank 1] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28584.0 | max reserved: 28584.0
16962
+ [Rank 8] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28284.0 | max reserved: 28284.0
16963
+ [Rank 6] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28624.0 | max reserved: 28624.0
16964
+ [Rank 12] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28304.0 | max reserved: 28304.0
16965
+ [Rank 4] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28384.0 | max reserved: 28384.0
16966
+ [Rank 9] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28684.0 | max reserved: 28684.0
16967
+ [Rank 5] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28624.0 | max reserved: 28624.0
16968
+ [Rank 0] (after 1 iterations) memory (MB) | allocated: 19677.26025390625 | max allocated: 27077.36181640625 | reserved: 28344.0 | max reserved: 28344.0
16969
+ batch tensor: tokens torch.Size([2, 81920])
16970
+ batch tensor: labels torch.Size([2, 81920])
16971
+ batch tensor: loss_mask torch.Size([2, 81920])
16972
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
16973
+ batch tensor: position_ids torch.Size([2, 81920])
16974
+ batch tensor after cp: tokens torch.Size([2, 20480])
16975
+ batch tensor after cp: labels torch.Size([2, 20480])
16976
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
16977
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
16978
+ batch tensor after cp: position_ids torch.Size([2, 20480])
16979
+ batch tensor: tokens torch.Size([2, 81920])
16980
+ batch tensor: labels torch.Size([2, 81920])
16981
+ batch tensor: loss_mask torch.Size([2, 81920])
16982
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
16983
+ batch tensor: position_ids torch.Size([2, 81920])
16984
+ batch tensor after cp: tokens torch.Size([2, 20480])
16985
+ batch tensor after cp: labels torch.Size([2, 20480])
16986
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
16987
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
16988
+ batch tensor after cp: position_ids torch.Size([2, 20480])
16989
+ batch tensor: tokens torch.Size([2, 81920])
16990
+ batch tensor: labels torch.Size([2, 81920])
16991
+ batch tensor: loss_mask torch.Size([2, 81920])
16992
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
16993
+ batch tensor: position_ids torch.Size([2, 81920])
16994
+ batch tensor after cp: tokens torch.Size([2, 20480])
16995
+ batch tensor after cp: labels torch.Size([2, 20480])
16996
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
16997
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
16998
+ batch tensor after cp: position_ids torch.Size([2, 20480])
16999
+ batch tensor: tokens torch.Size([2, 81920])
17000
+ batch tensor: labels torch.Size([2, 81920])
17001
+ batch tensor: loss_mask torch.Size([2, 81920])
17002
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17003
+ batch tensor: position_ids torch.Size([2, 81920])
17004
+ batch tensor after cp: tokens torch.Size([2, 20480])
17005
+ batch tensor after cp: labels torch.Size([2, 20480])
17006
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17007
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17008
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17009
+ batch tensor: tokens torch.Size([2, 81920])
17010
+ batch tensor: labels torch.Size([2, 81920])
17011
+ batch tensor: loss_mask torch.Size([2, 81920])
17012
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17013
+ batch tensor: position_ids torch.Size([2, 81920])
17014
+ batch tensor after cp: tokens torch.Size([2, 20480])
17015
+ batch tensor after cp: labels torch.Size([2, 20480])
17016
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17017
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17018
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17019
+ batch tensor: tokens torch.Size([2, 81920])
17020
+ batch tensor: labels torch.Size([2, 81920])
17021
+ batch tensor: loss_mask torch.Size([2, 81920])
17022
+ batch tensor: tokens torch.Size([2, 81920])
17023
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17024
+ batch tensor: position_ids torch.Size([2, 81920])
17025
+ batch tensor: labels torch.Size([2, 81920])
17026
+ batch tensor: loss_mask torch.Size([2, 81920])
17027
+ batch tensor after cp: tokens torch.Size([2, 20480])
17028
+ batch tensor after cp: labels torch.Size([2, 20480])
17029
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17030
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17031
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17032
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17033
+ batch tensor: position_ids torch.Size([2, 81920])
17034
+ batch tensor after cp: tokens torch.Size([2, 20480])
17035
+ batch tensor after cp: labels torch.Size([2, 20480])
17036
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17037
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17038
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17039
+ batch tensor: tokens torch.Size([2, 81920])
17040
+ batch tensor: labels torch.Size([2, 81920])
17041
+ batch tensor: loss_mask torch.Size([2, 81920])
17042
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17043
+ batch tensor: position_ids torch.Size([2, 81920])
17044
+ batch tensor after cp: tokens torch.Size([2, 20480])
17045
+ batch tensor after cp: labels torch.Size([2, 20480])
17046
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17047
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17048
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17049
+ batch tensor: tokens torch.Size([2, 81920])
17050
+ batch tensor: labels torch.Size([2, 81920])
17051
+ batch tensor: loss_mask torch.Size([2, 81920])
17052
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17053
+ batch tensor: position_ids torch.Size([2, 81920])
17054
+ batch tensor after cp: tokens torch.Size([2, 20480])
17055
+ batch tensor after cp: labels torch.Size([2, 20480])
17056
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17057
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17058
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17059
+ batch tensor: tokens torch.Size([2, 81920])
17060
+ batch tensor: labels torch.Size([2, 81920])
17061
+ batch tensor: loss_mask torch.Size([2, 81920])
17062
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17063
+ batch tensor: position_ids torch.Size([2, 81920])
17064
+ batch tensor after cp: tokens torch.Size([2, 20480])
17065
+ batch tensor after cp: labels torch.Size([2, 20480])
17066
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17067
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17068
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17069
+ batch tensor: tokens torch.Size([2, 81920])
17070
+ batch tensor: labels torch.Size([2, 81920])
17071
+ batch tensor: loss_mask torch.Size([2, 81920])
17072
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17073
+ batch tensor: position_ids torch.Size([2, 81920])
17074
+ batch tensor after cp: tokens torch.Size([2, 20480])
17075
+ batch tensor after cp: labels torch.Size([2, 20480])
17076
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17077
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17078
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17079
+ batch tensor: tokens torch.Size([2, 81920])
17080
+ batch tensor: labels torch.Size([2, 81920])
17081
+ batch tensor: loss_mask torch.Size([2, 81920])
17082
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17083
+ batch tensor: position_ids torch.Size([2, 81920])
17084
+ batch tensor after cp: tokens torch.Size([2, 20480])
17085
+ batch tensor after cp: labels torch.Size([2, 20480])
17086
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17087
+ batch tensor: tokens torch.Size([2, 81920])
17088
+ batch tensor: labels torch.Size([2, 81920])
17089
+ batch tensor: loss_mask torch.Size([2, 81920])
17090
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17091
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17092
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17093
+ batch tensor: position_ids torch.Size([2, 81920])
17094
+ batch tensor after cp: tokens torch.Size([2, 20480])
17095
+ batch tensor after cp: labels torch.Size([2, 20480])
17096
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17097
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17098
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17099
+ batch tensor: tokens torch.Size([2, 81920])
17100
+ batch tensor: labels torch.Size([2, 81920])
17101
+ batch tensor: loss_mask torch.Size([2, 81920])
17102
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17103
+ batch tensor: position_ids torch.Size([2, 81920])
17104
+ batch tensor after cp: tokens torch.Size([2, 20480])
17105
+ batch tensor after cp: labels torch.Size([2, 20480])
17106
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17107
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17108
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17109
+ batch tensor: tokens torch.Size([2, 81920])
17110
+ batch tensor: labels torch.Size([2, 81920])
17111
+ batch tensor: loss_mask torch.Size([2, 81920])
17112
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17113
+ batch tensor: position_ids torch.Size([2, 81920])
17114
+ batch tensor after cp: tokens torch.Size([2, 20480])
17115
+ batch tensor after cp: labels torch.Size([2, 20480])
17116
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17117
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17118
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17119
+ batch tensor: tokens torch.Size([2, 81920])
17120
+ batch tensor: labels torch.Size([2, 81920])
17121
+ batch tensor: loss_mask torch.Size([2, 81920])
17122
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17123
+ batch tensor: position_ids torch.Size([2, 81920])
17124
+ batch tensor after cp: tokens torch.Size([2, 20480])
17125
+ batch tensor after cp: labels torch.Size([2, 20480])
17126
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17127
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17128
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17129
+ Start exporting trace 1
17130
+ Done exporting trace 1
17131
+ [2025-06-21 21:34:17] iteration 2/ 10 | consumed samples: 2 | elapsed time per iteration (ms): 8281.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 2147483648.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
17132
+ batch tensor: tokens torch.Size([2, 81920])
17133
+ batch tensor: labels torch.Size([2, 81920])
17134
+ batch tensor: loss_mask torch.Size([2, 81920])
17135
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17136
+ batch tensor: position_ids torch.Size([2, 81920])
17137
+ batch tensor after cp: tokens torch.Size([2, 20480])
17138
+ batch tensor after cp: labels torch.Size([2, 20480])
17139
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17140
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17141
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17142
+ batch tensor: tokens torch.Size([2, 81920])
17143
+ batch tensor: labels torch.Size([2, 81920])
17144
+ batch tensor: loss_mask torch.Size([2, 81920])
17145
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17146
+ batch tensor: position_ids torch.Size([2, 81920])
17147
+ batch tensor after cp: tokens torch.Size([2, 20480])
17148
+ batch tensor after cp: labels torch.Size([2, 20480])
17149
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17150
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17151
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17152
+ batch tensor: tokens torch.Size([2, 81920])
17153
+ batch tensor: labels torch.Size([2, 81920])
17154
+ batch tensor: loss_mask torch.Size([2, 81920])
17155
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17156
+ batch tensor: position_ids torch.Size([2, 81920])
17157
+ batch tensor after cp: tokens torch.Size([2, 20480])
17158
+ batch tensor after cp: labels torch.Size([2, 20480])
17159
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17160
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17161
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17162
+ batch tensor: tokens torch.Size([2, 81920])
17163
+ batch tensor: labels torch.Size([2, 81920])
17164
+ batch tensor: loss_mask torch.Size([2, 81920])
17165
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17166
+ batch tensor: position_ids torch.Size([2, 81920])
17167
+ batch tensor after cp: tokens torch.Size([2, 20480])
17168
+ batch tensor after cp: labels torch.Size([2, 20480])
17169
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17170
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17171
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17172
+ batch tensor: tokens torch.Size([2, 81920])
17173
+ batch tensor: labels torch.Size([2, 81920])
17174
+ batch tensor: loss_mask torch.Size([2, 81920])
17175
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17176
+ batch tensor: position_ids torch.Size([2, 81920])
17177
+ batch tensor after cp: tokens torch.Size([2, 20480])
17178
+ batch tensor after cp: labels torch.Size([2, 20480])
17179
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17180
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17181
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17182
+ batch tensor: tokens torch.Size([2, 81920])
17183
+ batch tensor: labels torch.Size([2, 81920])
17184
+ batch tensor: loss_mask torch.Size([2, 81920])
17185
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17186
+ batch tensor: position_ids torch.Size([2, 81920])
17187
+ batch tensor after cp: tokens torch.Size([2, 20480])
17188
+ batch tensor after cp: labels torch.Size([2, 20480])
17189
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17190
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17191
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17192
+ batch tensor: tokens torch.Size([2, 81920])
17193
+ batch tensor: labels torch.Size([2, 81920])
17194
+ batch tensor: loss_mask torch.Size([2, 81920])
17195
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17196
+ batch tensor: position_ids torch.Size([2, 81920])
17197
+ batch tensor after cp: tokens torch.Size([2, 20480])
17198
+ batch tensor after cp: labels torch.Size([2, 20480])
17199
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17200
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17201
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17202
+ batch tensor: tokens torch.Size([2, 81920])
17203
+ batch tensor: labels torch.Size([2, 81920])
17204
+ batch tensor: loss_mask torch.Size([2, 81920])
17205
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17206
+ batch tensor: position_ids torch.Size([2, 81920])
17207
+ batch tensor after cp: tokens torch.Size([2, 20480])
17208
+ batch tensor after cp: labels torch.Size([2, 20480])
17209
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17210
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17211
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17212
+ batch tensor: tokens torch.Size([2, 81920])
17213
+ batch tensor: labels torch.Size([2, 81920])
17214
+ batch tensor: loss_mask torch.Size([2, 81920])
17215
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17216
+ batch tensor: position_ids torch.Size([2, 81920])
17217
+ batch tensor after cp: tokens torch.Size([2, 20480])
17218
+ batch tensor after cp: labels torch.Size([2, 20480])
17219
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17220
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17221
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17222
+ batch tensor: tokens torch.Size([2, 81920])
17223
+ batch tensor: labels torch.Size([2, 81920])
17224
+ batch tensor: loss_mask torch.Size([2, 81920])
17225
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17226
+ batch tensor: position_ids torch.Size([2, 81920])
17227
+ batch tensor after cp: tokens torch.Size([2, 20480])
17228
+ batch tensor after cp: labels torch.Size([2, 20480])
17229
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17230
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17231
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17232
+ batch tensor: tokens torch.Size([2, 81920])
17233
+ batch tensor: labels torch.Size([2, 81920])
17234
+ batch tensor: loss_mask torch.Size([2, 81920])
17235
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17236
+ batch tensor: position_ids torch.Size([2, 81920])
17237
+ batch tensor after cp: tokens torch.Size([2, 20480])
17238
+ batch tensor after cp: labels torch.Size([2, 20480])
17239
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17240
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17241
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17242
+ batch tensor: tokens torch.Size([2, 81920])
17243
+ batch tensor: labels torch.Size([2, 81920])
17244
+ batch tensor: loss_mask torch.Size([2, 81920])
17245
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17246
+ batch tensor: position_ids torch.Size([2, 81920])
17247
+ batch tensor after cp: tokens torch.Size([2, 20480])
17248
+ batch tensor after cp: labels torch.Size([2, 20480])
17249
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17250
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17251
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17252
+ batch tensor: tokens torch.Size([2, 81920])
17253
+ batch tensor: labels torch.Size([2, 81920])
17254
+ batch tensor: loss_mask torch.Size([2, 81920])
17255
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17256
+ batch tensor: position_ids torch.Size([2, 81920])
17257
+ batch tensor after cp: tokens torch.Size([2, 20480])
17258
+ batch tensor after cp: labels torch.Size([2, 20480])
17259
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17260
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17261
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17262
+ batch tensor: tokens torch.Size([2, 81920])
17263
+ batch tensor: labels torch.Size([2, 81920])
17264
+ batch tensor: loss_mask torch.Size([2, 81920])
17265
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17266
+ batch tensor: position_ids torch.Size([2, 81920])
17267
+ batch tensor after cp: tokens torch.Size([2, 20480])
17268
+ batch tensor after cp: labels torch.Size([2, 20480])
17269
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17270
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17271
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17272
+ batch tensor: tokens torch.Size([2, 81920])
17273
+ batch tensor: labels torch.Size([2, 81920])
17274
+ batch tensor: loss_mask torch.Size([2, 81920])
17275
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17276
+ batch tensor: position_ids torch.Size([2, 81920])
17277
+ batch tensor after cp: tokens torch.Size([2, 20480])
17278
+ batch tensor after cp: labels torch.Size([2, 20480])
17279
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17280
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17281
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17282
+ batch tensor: tokens torch.Size([2, 81920])
17283
+ batch tensor: labels torch.Size([2, 81920])
17284
+ batch tensor: loss_mask torch.Size([2, 81920])
17285
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17286
+ batch tensor: position_ids torch.Size([2, 81920])
17287
+ batch tensor after cp: tokens torch.Size([2, 20480])
17288
+ batch tensor after cp: labels torch.Size([2, 20480])
17289
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17290
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17291
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17292
+ Start exporting trace 2
17293
+ Done exporting trace 2
17294
+ [2025-06-21 21:34:25] iteration 3/ 10 | consumed samples: 3 | elapsed time per iteration (ms): 7929.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 1073741824.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
17295
+ batch tensor: tokens torch.Size([2, 81920])
17296
+ batch tensor: labels torch.Size([2, 81920])
17297
+ batch tensor: loss_mask torch.Size([2, 81920])
17298
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17299
+ batch tensor: position_ids torch.Size([2, 81920])
17300
+ batch tensor after cp: tokens torch.Size([2, 20480])
17301
+ batch tensor after cp: labels torch.Size([2, 20480])
17302
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17303
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17304
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17305
+ batch tensor: tokens torch.Size([2, 81920])
17306
+ batch tensor: labels torch.Size([2, 81920])
17307
+ batch tensor: loss_mask torch.Size([2, 81920])
17308
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17309
+ batch tensor: position_ids torch.Size([2, 81920])
17310
+ batch tensor after cp: tokens torch.Size([2, 20480])
17311
+ batch tensor after cp: labels torch.Size([2, 20480])
17312
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17313
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17314
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17315
+ batch tensor: tokens torch.Size([2, 81920])
17316
+ batch tensor: labels torch.Size([2, 81920])
17317
+ batch tensor: loss_mask torch.Size([2, 81920])
17318
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17319
+ batch tensor: position_ids torch.Size([2, 81920])
17320
+ batch tensor after cp: tokens torch.Size([2, 20480])
17321
+ batch tensor after cp: labels torch.Size([2, 20480])
17322
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17323
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17324
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17325
+ batch tensor: tokens torch.Size([2, 81920])
17326
+ batch tensor: labels torch.Size([2, 81920])
17327
+ batch tensor: loss_mask torch.Size([2, 81920])
17328
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17329
+ batch tensor: position_ids torch.Size([2, 81920])
17330
+ batch tensor after cp: tokens torch.Size([2, 20480])
17331
+ batch tensor after cp: labels torch.Size([2, 20480])
17332
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17333
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17334
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17335
+ batch tensor: tokens torch.Size([2, 81920])
17336
+ batch tensor: labels torch.Size([2, 81920])
17337
+ batch tensor: loss_mask torch.Size([2, 81920])
17338
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17339
+ batch tensor: position_ids torch.Size([2, 81920])
17340
+ batch tensor after cp: tokens torch.Size([2, 20480])
17341
+ batch tensor after cp: labels torch.Size([2, 20480])
17342
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17343
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17344
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17345
+ batch tensor: tokens torch.Size([2, 81920])
17346
+ batch tensor: labels torch.Size([2, 81920])
17347
+ batch tensor: loss_mask torch.Size([2, 81920])
17348
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17349
+ batch tensor: position_ids torch.Size([2, 81920])
17350
+ batch tensor after cp: tokens torch.Size([2, 20480])
17351
+ batch tensor after cp: labels torch.Size([2, 20480])
17352
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17353
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17354
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17355
+ batch tensor: tokens torch.Size([2, 81920])
17356
+ batch tensor: labels torch.Size([2, 81920])
17357
+ batch tensor: loss_mask torch.Size([2, 81920])
17358
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17359
+ batch tensor: position_ids torch.Size([2, 81920])
17360
+ batch tensor after cp: tokens torch.Size([2, 20480])
17361
+ batch tensor after cp: labels torch.Size([2, 20480])
17362
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17363
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17364
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17365
+ batch tensor: tokens torch.Size([2, 81920])
17366
+ batch tensor: labels torch.Size([2, 81920])
17367
+ batch tensor: loss_mask torch.Size([2, 81920])
17368
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17369
+ batch tensor: position_ids torch.Size([2, 81920])
17370
+ batch tensor after cp: tokens torch.Size([2, 20480])
17371
+ batch tensor after cp: labels torch.Size([2, 20480])
17372
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17373
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17374
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17375
+ batch tensor: tokens torch.Size([2, 81920])
17376
+ batch tensor: labels torch.Size([2, 81920])
17377
+ batch tensor: loss_mask torch.Size([2, 81920])
17378
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17379
+ batch tensor: position_ids torch.Size([2, 81920])
17380
+ batch tensor after cp: tokens torch.Size([2, 20480])
17381
+ batch tensor after cp: labels torch.Size([2, 20480])
17382
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17383
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17384
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17385
+ batch tensor: tokens torch.Size([2, 81920])
17386
+ batch tensor: labels torch.Size([2, 81920])
17387
+ batch tensor: loss_mask torch.Size([2, 81920])
17388
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17389
+ batch tensor: position_ids torch.Size([2, 81920])
17390
+ batch tensor after cp: tokens torch.Size([2, 20480])
17391
+ batch tensor after cp: labels torch.Size([2, 20480])
17392
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17393
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17394
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17395
+ batch tensor: tokens torch.Size([2, 81920])
17396
+ batch tensor: labels torch.Size([2, 81920])
17397
+ batch tensor: loss_mask torch.Size([2, 81920])
17398
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17399
+ batch tensor: position_ids torch.Size([2, 81920])
17400
+ batch tensor after cp: tokens torch.Size([2, 20480])
17401
+ batch tensor after cp: labels torch.Size([2, 20480])
17402
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17403
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17404
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17405
+ batch tensor: tokens torch.Size([2, 81920])
17406
+ batch tensor: labels torch.Size([2, 81920])
17407
+ batch tensor: loss_mask torch.Size([2, 81920])
17408
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17409
+ batch tensor: position_ids torch.Size([2, 81920])
17410
+ batch tensor after cp: tokens torch.Size([2, 20480])
17411
+ batch tensor after cp: labels torch.Size([2, 20480])
17412
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17413
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17414
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17415
+ batch tensor: tokens torch.Size([2, 81920])
17416
+ batch tensor: labels torch.Size([2, 81920])
17417
+ batch tensor: loss_mask torch.Size([2, 81920])
17418
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17419
+ batch tensor: position_ids torch.Size([2, 81920])
17420
+ batch tensor after cp: tokens torch.Size([2, 20480])
17421
+ batch tensor after cp: labels torch.Size([2, 20480])
17422
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17423
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17424
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17425
+ batch tensor: tokens torch.Size([2, 81920])
17426
+ batch tensor: labels torch.Size([2, 81920])
17427
+ batch tensor: loss_mask torch.Size([2, 81920])
17428
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17429
+ batch tensor: position_ids torch.Size([2, 81920])
17430
+ batch tensor after cp: tokens torch.Size([2, 20480])
17431
+ batch tensor after cp: labels torch.Size([2, 20480])
17432
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17433
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17434
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17435
+ batch tensor: tokens torch.Size([2, 81920])
17436
+ batch tensor: labels torch.Size([2, 81920])
17437
+ batch tensor: loss_mask torch.Size([2, 81920])
17438
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17439
+ batch tensor: position_ids torch.Size([2, 81920])
17440
+ batch tensor after cp: tokens torch.Size([2, 20480])
17441
+ batch tensor after cp: labels torch.Size([2, 20480])
17442
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17443
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17444
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17445
+ batch tensor: tokens torch.Size([2, 81920])
17446
+ batch tensor: labels torch.Size([2, 81920])
17447
+ batch tensor: loss_mask torch.Size([2, 81920])
17448
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17449
+ batch tensor: position_ids torch.Size([2, 81920])
17450
+ batch tensor after cp: tokens torch.Size([2, 20480])
17451
+ batch tensor after cp: labels torch.Size([2, 20480])
17452
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17453
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17454
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17455
+ Start exporting trace 3
17456
+ Done exporting trace 3
17457
+ [2025-06-21 21:34:33] iteration 4/ 10 | consumed samples: 4 | elapsed time per iteration (ms): 7924.6 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 536870912.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
17458
+ batch tensor: tokens torch.Size([2, 81920])
17459
+ batch tensor: labels torch.Size([2, 81920])
17460
+ batch tensor: loss_mask torch.Size([2, 81920])
17461
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17462
+ batch tensor: position_ids torch.Size([2, 81920])
17463
+ batch tensor after cp: tokens torch.Size([2, 20480])
17464
+ batch tensor after cp: labels torch.Size([2, 20480])
17465
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17466
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17467
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17468
+ batch tensor: tokens torch.Size([2, 81920])
17469
+ batch tensor: labels torch.Size([2, 81920])
17470
+ batch tensor: loss_mask torch.Size([2, 81920])
17471
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17472
+ batch tensor: position_ids torch.Size([2, 81920])
17473
+ batch tensor after cp: tokens torch.Size([2, 20480])
17474
+ batch tensor after cp: labels torch.Size([2, 20480])
17475
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17476
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17477
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17478
+ batch tensor: tokens torch.Size([2, 81920])
17479
+ batch tensor: labels torch.Size([2, 81920])
17480
+ batch tensor: loss_mask torch.Size([2, 81920])
17481
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17482
+ batch tensor: position_ids torch.Size([2, 81920])
17483
+ batch tensor after cp: tokens torch.Size([2, 20480])
17484
+ batch tensor after cp: labels torch.Size([2, 20480])
17485
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17486
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17487
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17488
+ batch tensor: tokens torch.Size([2, 81920])
17489
+ batch tensor: labels torch.Size([2, 81920])
17490
+ batch tensor: loss_mask torch.Size([2, 81920])
17491
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17492
+ batch tensor: position_ids torch.Size([2, 81920])
17493
+ batch tensor after cp: tokens torch.Size([2, 20480])
17494
+ batch tensor after cp: labels torch.Size([2, 20480])
17495
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17496
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17497
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17498
+ batch tensor: tokens torch.Size([2, 81920])
17499
+ batch tensor: labels torch.Size([2, 81920])
17500
+ batch tensor: loss_mask torch.Size([2, 81920])
17501
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17502
+ batch tensor: position_ids torch.Size([2, 81920])
17503
+ batch tensor after cp: tokens torch.Size([2, 20480])
17504
+ batch tensor after cp: labels torch.Size([2, 20480])
17505
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17506
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17507
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17508
+ batch tensor: tokens torch.Size([2, 81920])
17509
+ batch tensor: labels torch.Size([2, 81920])
17510
+ batch tensor: loss_mask torch.Size([2, 81920])
17511
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17512
+ batch tensor: position_ids torch.Size([2, 81920])
17513
+ batch tensor after cp: tokens torch.Size([2, 20480])
17514
+ batch tensor after cp: labels torch.Size([2, 20480])
17515
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17516
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17517
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17518
+ batch tensor: tokens torch.Size([2, 81920])
17519
+ batch tensor: labels torch.Size([2, 81920])
17520
+ batch tensor: loss_mask torch.Size([2, 81920])
17521
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17522
+ batch tensor: position_ids torch.Size([2, 81920])
17523
+ batch tensor after cp: tokens torch.Size([2, 20480])
17524
+ batch tensor after cp: labels torch.Size([2, 20480])
17525
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17526
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17527
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17528
+ batch tensor: tokens torch.Size([2, 81920])
17529
+ batch tensor: labels torch.Size([2, 81920])
17530
+ batch tensor: loss_mask torch.Size([2, 81920])
17531
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17532
+ batch tensor: position_ids torch.Size([2, 81920])
17533
+ batch tensor after cp: tokens torch.Size([2, 20480])
17534
+ batch tensor after cp: labels torch.Size([2, 20480])
17535
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17536
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17537
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17538
+ batch tensor: tokens torch.Size([2, 81920])
17539
+ batch tensor: labels torch.Size([2, 81920])
17540
+ batch tensor: loss_mask torch.Size([2, 81920])
17541
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17542
+ batch tensor: position_ids torch.Size([2, 81920])
17543
+ batch tensor after cp: tokens torch.Size([2, 20480])
17544
+ batch tensor after cp: labels torch.Size([2, 20480])
17545
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17546
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17547
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17548
+ batch tensor: tokens torch.Size([2, 81920])
17549
+ batch tensor: labels torch.Size([2, 81920])
17550
+ batch tensor: loss_mask torch.Size([2, 81920])
17551
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17552
+ batch tensor: position_ids torch.Size([2, 81920])
17553
+ batch tensor after cp: tokens torch.Size([2, 20480])
17554
+ batch tensor after cp: labels torch.Size([2, 20480])
17555
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17556
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17557
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17558
+ batch tensor: tokens torch.Size([2, 81920])
17559
+ batch tensor: labels torch.Size([2, 81920])
17560
+ batch tensor: loss_mask torch.Size([2, 81920])
17561
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17562
+ batch tensor: position_ids torch.Size([2, 81920])
17563
+ batch tensor after cp: tokens torch.Size([2, 20480])
17564
+ batch tensor after cp: labels torch.Size([2, 20480])
17565
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17566
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17567
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17568
+ batch tensor: tokens torch.Size([2, 81920])
17569
+ batch tensor: labels torch.Size([2, 81920])
17570
+ batch tensor: loss_mask torch.Size([2, 81920])
17571
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17572
+ batch tensor: position_ids torch.Size([2, 81920])
17573
+ batch tensor after cp: tokens torch.Size([2, 20480])
17574
+ batch tensor after cp: labels torch.Size([2, 20480])
17575
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17576
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17577
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17578
+ batch tensor: tokens torch.Size([2, 81920])
17579
+ batch tensor: labels torch.Size([2, 81920])
17580
+ batch tensor: loss_mask torch.Size([2, 81920])
17581
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17582
+ batch tensor: position_ids torch.Size([2, 81920])
17583
+ batch tensor after cp: tokens torch.Size([2, 20480])
17584
+ batch tensor after cp: labels torch.Size([2, 20480])
17585
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17586
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17587
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17588
+ batch tensor: tokens torch.Size([2, 81920])
17589
+ batch tensor: labels torch.Size([2, 81920])
17590
+ batch tensor: loss_mask torch.Size([2, 81920])
17591
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17592
+ batch tensor: position_ids torch.Size([2, 81920])
17593
+ batch tensor after cp: tokens torch.Size([2, 20480])
17594
+ batch tensor after cp: labels torch.Size([2, 20480])
17595
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17596
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17597
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17598
+ batch tensor: tokens torch.Size([2, 81920])
17599
+ batch tensor: labels torch.Size([2, 81920])
17600
+ batch tensor: loss_mask torch.Size([2, 81920])
17601
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17602
+ batch tensor: position_ids torch.Size([2, 81920])
17603
+ batch tensor after cp: tokens torch.Size([2, 20480])
17604
+ batch tensor after cp: labels torch.Size([2, 20480])
17605
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17606
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17607
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17608
+ batch tensor: tokens torch.Size([2, 81920])
17609
+ batch tensor: labels torch.Size([2, 81920])
17610
+ batch tensor: loss_mask torch.Size([2, 81920])
17611
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17612
+ batch tensor: position_ids torch.Size([2, 81920])
17613
+ batch tensor after cp: tokens torch.Size([2, 20480])
17614
+ batch tensor after cp: labels torch.Size([2, 20480])
17615
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17616
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17617
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17618
+ Start exporting trace 4
17619
+ Done exporting trace 4
17620
+ [2025-06-21 21:34:41] iteration 5/ 10 | consumed samples: 5 | elapsed time per iteration (ms): 7823.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 268435456.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
17621
+ batch tensor: tokens torch.Size([2, 81920])
17622
+ batch tensor: labels torch.Size([2, 81920])
17623
+ batch tensor: loss_mask torch.Size([2, 81920])
17624
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17625
+ batch tensor: position_ids torch.Size([2, 81920])
17626
+ batch tensor after cp: tokens torch.Size([2, 20480])
17627
+ batch tensor after cp: labels torch.Size([2, 20480])
17628
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17629
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17630
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17631
+ batch tensor: tokens torch.Size([2, 81920])
17632
+ batch tensor: labels torch.Size([2, 81920])
17633
+ batch tensor: loss_mask torch.Size([2, 81920])
17634
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17635
+ batch tensor: position_ids torch.Size([2, 81920])
17636
+ batch tensor after cp: tokens torch.Size([2, 20480])
17637
+ batch tensor after cp: labels torch.Size([2, 20480])
17638
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17639
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17640
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17641
+ batch tensor: tokens torch.Size([2, 81920])
17642
+ batch tensor: labels torch.Size([2, 81920])
17643
+ batch tensor: loss_mask torch.Size([2, 81920])
17644
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17645
+ batch tensor: position_ids torch.Size([2, 81920])
17646
+ batch tensor after cp: tokens torch.Size([2, 20480])
17647
+ batch tensor after cp: labels torch.Size([2, 20480])
17648
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17649
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17650
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17651
+ batch tensor: tokens torch.Size([2, 81920])
17652
+ batch tensor: labels torch.Size([2, 81920])
17653
+ batch tensor: loss_mask torch.Size([2, 81920])
17654
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17655
+ batch tensor: position_ids torch.Size([2, 81920])
17656
+ batch tensor after cp: tokens torch.Size([2, 20480])
17657
+ batch tensor after cp: labels torch.Size([2, 20480])
17658
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17659
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17660
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17661
+ batch tensor: tokens torch.Size([2, 81920])
17662
+ batch tensor: labels torch.Size([2, 81920])
17663
+ batch tensor: loss_mask torch.Size([2, 81920])
17664
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17665
+ batch tensor: position_ids torch.Size([2, 81920])
17666
+ batch tensor after cp: tokens torch.Size([2, 20480])
17667
+ batch tensor after cp: labels torch.Size([2, 20480])
17668
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17669
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17670
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17671
+ batch tensor: tokens torch.Size([2, 81920])
17672
+ batch tensor: labels torch.Size([2, 81920])
17673
+ batch tensor: loss_mask torch.Size([2, 81920])
17674
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17675
+ batch tensor: position_ids torch.Size([2, 81920])
17676
+ batch tensor after cp: tokens torch.Size([2, 20480])
17677
+ batch tensor after cp: labels torch.Size([2, 20480])
17678
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17679
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17680
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17681
+ batch tensor: tokens torch.Size([2, 81920])
17682
+ batch tensor: labels torch.Size([2, 81920])
17683
+ batch tensor: loss_mask torch.Size([2, 81920])
17684
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17685
+ batch tensor: position_ids torch.Size([2, 81920])
17686
+ batch tensor after cp: tokens torch.Size([2, 20480])
17687
+ batch tensor after cp: labels torch.Size([2, 20480])
17688
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17689
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17690
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17691
+ batch tensor: tokens torch.Size([2, 81920])
17692
+ batch tensor: labels torch.Size([2, 81920])
17693
+ batch tensor: loss_mask torch.Size([2, 81920])
17694
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17695
+ batch tensor: position_ids torch.Size([2, 81920])
17696
+ batch tensor after cp: tokens torch.Size([2, 20480])
17697
+ batch tensor after cp: labels torch.Size([2, 20480])
17698
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17699
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17700
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17701
+ batch tensor: tokens torch.Size([2, 81920])
17702
+ batch tensor: labels torch.Size([2, 81920])
17703
+ batch tensor: loss_mask torch.Size([2, 81920])
17704
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17705
+ batch tensor: position_ids torch.Size([2, 81920])
17706
+ batch tensor after cp: tokens torch.Size([2, 20480])
17707
+ batch tensor after cp: labels torch.Size([2, 20480])
17708
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17709
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17710
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17711
+ batch tensor: tokens torch.Size([2, 81920])
17712
+ batch tensor: labels torch.Size([2, 81920])
17713
+ batch tensor: loss_mask torch.Size([2, 81920])
17714
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17715
+ batch tensor: position_ids torch.Size([2, 81920])
17716
+ batch tensor after cp: tokens torch.Size([2, 20480])
17717
+ batch tensor after cp: labels torch.Size([2, 20480])
17718
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17719
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17720
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17721
+ batch tensor: tokens torch.Size([2, 81920])
17722
+ batch tensor: labels torch.Size([2, 81920])
17723
+ batch tensor: loss_mask torch.Size([2, 81920])
17724
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17725
+ batch tensor: position_ids torch.Size([2, 81920])
17726
+ batch tensor after cp: tokens torch.Size([2, 20480])
17727
+ batch tensor after cp: labels torch.Size([2, 20480])
17728
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17729
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17730
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17731
+ batch tensor: tokens torch.Size([2, 81920])
17732
+ batch tensor: labels torch.Size([2, 81920])
17733
+ batch tensor: loss_mask torch.Size([2, 81920])
17734
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17735
+ batch tensor: position_ids torch.Size([2, 81920])
17736
+ batch tensor after cp: tokens torch.Size([2, 20480])
17737
+ batch tensor after cp: labels torch.Size([2, 20480])
17738
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17739
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17740
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17741
+ batch tensor: tokens torch.Size([2, 81920])
17742
+ batch tensor: labels torch.Size([2, 81920])
17743
+ batch tensor: loss_mask torch.Size([2, 81920])
17744
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17745
+ batch tensor: position_ids torch.Size([2, 81920])
17746
+ batch tensor after cp: tokens torch.Size([2, 20480])
17747
+ batch tensor after cp: labels torch.Size([2, 20480])
17748
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17749
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17750
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17751
+ batch tensor: tokens torch.Size([2, 81920])
17752
+ batch tensor: labels torch.Size([2, 81920])
17753
+ batch tensor: loss_mask torch.Size([2, 81920])
17754
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17755
+ batch tensor: position_ids torch.Size([2, 81920])
17756
+ batch tensor after cp: tokens torch.Size([2, 20480])
17757
+ batch tensor after cp: labels torch.Size([2, 20480])
17758
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17759
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17760
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17761
+ batch tensor: tokens torch.Size([2, 81920])
17762
+ batch tensor: labels torch.Size([2, 81920])
17763
+ batch tensor: loss_mask torch.Size([2, 81920])
17764
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17765
+ batch tensor: position_ids torch.Size([2, 81920])
17766
+ batch tensor after cp: tokens torch.Size([2, 20480])
17767
+ batch tensor after cp: labels torch.Size([2, 20480])
17768
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17769
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17770
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17771
+ batch tensor: tokens torch.Size([2, 81920])
17772
+ batch tensor: labels torch.Size([2, 81920])
17773
+ batch tensor: loss_mask torch.Size([2, 81920])
17774
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17775
+ batch tensor: position_ids torch.Size([2, 81920])
17776
+ batch tensor after cp: tokens torch.Size([2, 20480])
17777
+ batch tensor after cp: labels torch.Size([2, 20480])
17778
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17779
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17780
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17781
+ Start exporting trace 5
17782
+ Done exporting trace 5
17783
+ [2025-06-21 21:34:48] iteration 6/ 10 | consumed samples: 6 | elapsed time per iteration (ms): 7735.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 134217728.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
17784
+ batch tensor: tokens torch.Size([2, 81920])
17785
+ batch tensor: labels torch.Size([2, 81920])
17786
+ batch tensor: loss_mask torch.Size([2, 81920])
17787
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17788
+ batch tensor: position_ids torch.Size([2, 81920])
17789
+ batch tensor after cp: tokens torch.Size([2, 20480])
17790
+ batch tensor after cp: labels torch.Size([2, 20480])
17791
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17792
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17793
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17794
+ batch tensor: tokens torch.Size([2, 81920])
17795
+ batch tensor: labels torch.Size([2, 81920])
17796
+ batch tensor: loss_mask torch.Size([2, 81920])
17797
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17798
+ batch tensor: position_ids torch.Size([2, 81920])
17799
+ batch tensor after cp: tokens torch.Size([2, 20480])
17800
+ batch tensor after cp: labels torch.Size([2, 20480])
17801
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17802
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17803
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17804
+ batch tensor: tokens torch.Size([2, 81920])
17805
+ batch tensor: labels torch.Size([2, 81920])
17806
+ batch tensor: loss_mask torch.Size([2, 81920])
17807
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17808
+ batch tensor: position_ids torch.Size([2, 81920])
17809
+ batch tensor after cp: tokens torch.Size([2, 20480])
17810
+ batch tensor after cp: labels torch.Size([2, 20480])
17811
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17812
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17813
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17814
+ batch tensor: tokens torch.Size([2, 81920])
17815
+ batch tensor: labels torch.Size([2, 81920])
17816
+ batch tensor: loss_mask torch.Size([2, 81920])
17817
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17818
+ batch tensor: position_ids torch.Size([2, 81920])
17819
+ batch tensor after cp: tokens torch.Size([2, 20480])
17820
+ batch tensor after cp: labels torch.Size([2, 20480])
17821
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17822
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17823
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17824
+ batch tensor: tokens torch.Size([2, 81920])
17825
+ batch tensor: labels torch.Size([2, 81920])
17826
+ batch tensor: loss_mask torch.Size([2, 81920])
17827
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17828
+ batch tensor: position_ids torch.Size([2, 81920])
17829
+ batch tensor after cp: tokens torch.Size([2, 20480])
17830
+ batch tensor after cp: labels torch.Size([2, 20480])
17831
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17832
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17833
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17834
+ batch tensor: tokens torch.Size([2, 81920])
17835
+ batch tensor: labels torch.Size([2, 81920])
17836
+ batch tensor: loss_mask torch.Size([2, 81920])
17837
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17838
+ batch tensor: position_ids torch.Size([2, 81920])
17839
+ batch tensor after cp: tokens torch.Size([2, 20480])
17840
+ batch tensor after cp: labels torch.Size([2, 20480])
17841
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17842
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17843
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17844
+ batch tensor: tokens torch.Size([2, 81920])
17845
+ batch tensor: labels torch.Size([2, 81920])
17846
+ batch tensor: loss_mask torch.Size([2, 81920])
17847
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17848
+ batch tensor: position_ids torch.Size([2, 81920])
17849
+ batch tensor after cp: tokens torch.Size([2, 20480])
17850
+ batch tensor after cp: labels torch.Size([2, 20480])
17851
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17852
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17853
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17854
+ batch tensor: tokens torch.Size([2, 81920])
17855
+ batch tensor: labels torch.Size([2, 81920])
17856
+ batch tensor: loss_mask torch.Size([2, 81920])
17857
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17858
+ batch tensor: position_ids torch.Size([2, 81920])
17859
+ batch tensor after cp: tokens torch.Size([2, 20480])
17860
+ batch tensor after cp: labels torch.Size([2, 20480])
17861
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17862
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17863
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17864
+ batch tensor: tokens torch.Size([2, 81920])
17865
+ batch tensor: labels torch.Size([2, 81920])
17866
+ batch tensor: loss_mask torch.Size([2, 81920])
17867
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17868
+ batch tensor: position_ids torch.Size([2, 81920])
17869
+ batch tensor after cp: tokens torch.Size([2, 20480])
17870
+ batch tensor after cp: labels torch.Size([2, 20480])
17871
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17872
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17873
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17874
+ batch tensor: tokens torch.Size([2, 81920])
17875
+ batch tensor: labels torch.Size([2, 81920])
17876
+ batch tensor: loss_mask torch.Size([2, 81920])
17877
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17878
+ batch tensor: position_ids torch.Size([2, 81920])
17879
+ batch tensor after cp: tokens torch.Size([2, 20480])
17880
+ batch tensor after cp: labels torch.Size([2, 20480])
17881
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17882
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17883
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17884
+ batch tensor: tokens torch.Size([2, 81920])
17885
+ batch tensor: labels torch.Size([2, 81920])
17886
+ batch tensor: loss_mask torch.Size([2, 81920])
17887
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17888
+ batch tensor: position_ids torch.Size([2, 81920])
17889
+ batch tensor after cp: tokens torch.Size([2, 20480])
17890
+ batch tensor after cp: labels torch.Size([2, 20480])
17891
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17892
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17893
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17894
+ batch tensor: tokens torch.Size([2, 81920])
17895
+ batch tensor: labels torch.Size([2, 81920])
17896
+ batch tensor: loss_mask torch.Size([2, 81920])
17897
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17898
+ batch tensor: position_ids torch.Size([2, 81920])
17899
+ batch tensor after cp: tokens torch.Size([2, 20480])
17900
+ batch tensor after cp: labels torch.Size([2, 20480])
17901
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17902
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17903
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17904
+ batch tensor: tokens torch.Size([2, 81920])
17905
+ batch tensor: labels torch.Size([2, 81920])
17906
+ batch tensor: loss_mask torch.Size([2, 81920])
17907
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17908
+ batch tensor: position_ids torch.Size([2, 81920])
17909
+ batch tensor after cp: tokens torch.Size([2, 20480])
17910
+ batch tensor after cp: labels torch.Size([2, 20480])
17911
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17912
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17913
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17914
+ batch tensor: tokens torch.Size([2, 81920])
17915
+ batch tensor: labels torch.Size([2, 81920])
17916
+ batch tensor: loss_mask torch.Size([2, 81920])
17917
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17918
+ batch tensor: position_ids torch.Size([2, 81920])
17919
+ batch tensor after cp: tokens torch.Size([2, 20480])
17920
+ batch tensor after cp: labels torch.Size([2, 20480])
17921
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17922
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17923
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17924
+ batch tensor: tokens torch.Size([2, 81920])
17925
+ batch tensor: labels torch.Size([2, 81920])
17926
+ batch tensor: loss_mask torch.Size([2, 81920])
17927
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17928
+ batch tensor: position_ids torch.Size([2, 81920])
17929
+ batch tensor after cp: tokens torch.Size([2, 20480])
17930
+ batch tensor after cp: labels torch.Size([2, 20480])
17931
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17932
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17933
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17934
+ batch tensor: tokens torch.Size([2, 81920])
17935
+ batch tensor: labels torch.Size([2, 81920])
17936
+ batch tensor: loss_mask torch.Size([2, 81920])
17937
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17938
+ batch tensor: position_ids torch.Size([2, 81920])
17939
+ batch tensor after cp: tokens torch.Size([2, 20480])
17940
+ batch tensor after cp: labels torch.Size([2, 20480])
17941
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17942
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17943
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17944
+ Start exporting trace 6
17945
+ Done exporting trace 6
17946
+ [2025-06-21 21:34:56] iteration 7/ 10 | consumed samples: 7 | elapsed time per iteration (ms): 7652.5 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 67108864.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
17947
+ batch tensor: tokens torch.Size([2, 81920])
17948
+ batch tensor: labels torch.Size([2, 81920])
17949
+ batch tensor: loss_mask torch.Size([2, 81920])
17950
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17951
+ batch tensor: position_ids torch.Size([2, 81920])
17952
+ batch tensor after cp: tokens torch.Size([2, 20480])
17953
+ batch tensor after cp: labels torch.Size([2, 20480])
17954
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17955
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17956
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17957
+ batch tensor: tokens torch.Size([2, 81920])
17958
+ batch tensor: labels torch.Size([2, 81920])
17959
+ batch tensor: loss_mask torch.Size([2, 81920])
17960
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17961
+ batch tensor: position_ids torch.Size([2, 81920])
17962
+ batch tensor after cp: tokens torch.Size([2, 20480])
17963
+ batch tensor after cp: labels torch.Size([2, 20480])
17964
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17965
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17966
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17967
+ batch tensor: tokens torch.Size([2, 81920])
17968
+ batch tensor: labels torch.Size([2, 81920])
17969
+ batch tensor: loss_mask torch.Size([2, 81920])
17970
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17971
+ batch tensor: position_ids torch.Size([2, 81920])
17972
+ batch tensor after cp: tokens torch.Size([2, 20480])
17973
+ batch tensor after cp: labels torch.Size([2, 20480])
17974
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17975
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17976
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17977
+ batch tensor: tokens torch.Size([2, 81920])
17978
+ batch tensor: labels torch.Size([2, 81920])
17979
+ batch tensor: loss_mask torch.Size([2, 81920])
17980
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17981
+ batch tensor: position_ids torch.Size([2, 81920])
17982
+ batch tensor after cp: tokens torch.Size([2, 20480])
17983
+ batch tensor after cp: labels torch.Size([2, 20480])
17984
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17985
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17986
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17987
+ batch tensor: tokens torch.Size([2, 81920])
17988
+ batch tensor: labels torch.Size([2, 81920])
17989
+ batch tensor: loss_mask torch.Size([2, 81920])
17990
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
17991
+ batch tensor: position_ids torch.Size([2, 81920])
17992
+ batch tensor after cp: tokens torch.Size([2, 20480])
17993
+ batch tensor after cp: labels torch.Size([2, 20480])
17994
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
17995
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
17996
+ batch tensor after cp: position_ids torch.Size([2, 20480])
17997
+ batch tensor: tokens torch.Size([2, 81920])
17998
+ batch tensor: labels torch.Size([2, 81920])
17999
+ batch tensor: loss_mask torch.Size([2, 81920])
18000
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
18001
+ batch tensor: position_ids torch.Size([2, 81920])
18002
+ batch tensor after cp: tokens torch.Size([2, 20480])
18003
+ batch tensor after cp: labels torch.Size([2, 20480])
18004
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
18005
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
18006
+ batch tensor after cp: position_ids torch.Size([2, 20480])
18007
+ batch tensor: tokens torch.Size([2, 81920])
18008
+ batch tensor: labels torch.Size([2, 81920])
18009
+ batch tensor: loss_mask torch.Size([2, 81920])
18010
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
18011
+ batch tensor: position_ids torch.Size([2, 81920])
18012
+ batch tensor after cp: tokens torch.Size([2, 20480])
18013
+ batch tensor after cp: labels torch.Size([2, 20480])
18014
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
18015
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
18016
+ batch tensor after cp: position_ids torch.Size([2, 20480])
18017
+ batch tensor: tokens torch.Size([2, 81920])
18018
+ batch tensor: labels torch.Size([2, 81920])
18019
+ batch tensor: loss_mask torch.Size([2, 81920])
18020
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
18021
+ batch tensor: position_ids torch.Size([2, 81920])
18022
+ batch tensor after cp: tokens torch.Size([2, 20480])
18023
+ batch tensor after cp: labels torch.Size([2, 20480])
18024
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
18025
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
18026
+ batch tensor after cp: position_ids torch.Size([2, 20480])
18027
+ batch tensor: tokens torch.Size([2, 81920])
18028
+ batch tensor: labels torch.Size([2, 81920])
18029
+ batch tensor: loss_mask torch.Size([2, 81920])
18030
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
18031
+ batch tensor: position_ids torch.Size([2, 81920])
18032
+ batch tensor after cp: tokens torch.Size([2, 20480])
18033
+ batch tensor after cp: labels torch.Size([2, 20480])
18034
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
18035
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
18036
+ batch tensor after cp: position_ids torch.Size([2, 20480])
18037
+ batch tensor: tokens torch.Size([2, 81920])
18038
+ batch tensor: labels torch.Size([2, 81920])
18039
+ batch tensor: loss_mask torch.Size([2, 81920])
18040
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
18041
+ batch tensor: tokens torch.Size([2, 81920])
18042
+ batch tensor: labels torch.Size([2, 81920])
18043
+ batch tensor: loss_mask torch.Size([2, 81920])
18044
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
18045
+ batch tensor: position_ids torch.Size([2, 81920])
18046
+ batch tensor: position_ids torch.Size([2, 81920])
18047
+ batch tensor after cp: tokens torch.Size([2, 20480])
18048
+ batch tensor after cp: labels torch.Size([2, 20480])
18049
+ batch tensor after cp: tokens torch.Size([2, 20480])
18050
+ batch tensor after cp: labels torch.Size([2, 20480])
18051
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
18052
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
18053
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
18054
+ batch tensor after cp: position_ids torch.Size([2, 20480])
18055
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
18056
+ batch tensor after cp: position_ids torch.Size([2, 20480])
18057
+ batch tensor: tokens torch.Size([2, 81920])
18058
+ batch tensor: labels torch.Size([2, 81920])
18059
+ batch tensor: loss_mask torch.Size([2, 81920])
18060
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
18061
+ batch tensor: position_ids torch.Size([2, 81920])
18062
+ batch tensor after cp: tokens torch.Size([2, 20480])
18063
+ batch tensor after cp: labels torch.Size([2, 20480])
18064
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
18065
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
18066
+ batch tensor after cp: position_ids torch.Size([2, 20480])
18067
+ batch tensor: tokens torch.Size([2, 81920])
18068
+ batch tensor: labels torch.Size([2, 81920])
18069
+ batch tensor: loss_mask torch.Size([2, 81920])
18070
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
18071
+ batch tensor: position_ids torch.Size([2, 81920])
18072
+ batch tensor after cp: tokens torch.Size([2, 20480])
18073
+ batch tensor after cp: labels torch.Size([2, 20480])
18074
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
18075
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
18076
+ batch tensor after cp: position_ids torch.Size([2, 20480])
18077
+ batch tensor: tokens torch.Size([2, 81920])
18078
+ batch tensor: labels torch.Size([2, 81920])
18079
+ batch tensor: loss_mask torch.Size([2, 81920])
18080
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
18081
+ batch tensor: position_ids torch.Size([2, 81920])
18082
+ batch tensor after cp: tokens torch.Size([2, 20480])
18083
+ batch tensor after cp: labels torch.Size([2, 20480])
18084
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
18085
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
18086
+ batch tensor after cp: position_ids torch.Size([2, 20480])
18087
+ batch tensor: tokens torch.Size([2, 81920])
18088
+ batch tensor: labels torch.Size([2, 81920])
18089
+ batch tensor: loss_mask torch.Size([2, 81920])
18090
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
18091
+ batch tensor: position_ids torch.Size([2, 81920])
18092
+ batch tensor after cp: tokens torch.Size([2, 20480])
18093
+ batch tensor after cp: labels torch.Size([2, 20480])
18094
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
18095
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
18096
+ batch tensor after cp: position_ids torch.Size([2, 20480])
18097
+ batch tensor: tokens torch.Size([2, 81920])
18098
+ batch tensor: labels torch.Size([2, 81920])
18099
+ batch tensor: loss_mask torch.Size([2, 81920])
18100
+ batch tensor: attention_mask torch.Size([2, 1, 81920, 81920])
18101
+ batch tensor: position_ids torch.Size([2, 81920])
18102
+ batch tensor after cp: tokens torch.Size([2, 20480])
18103
+ batch tensor after cp: labels torch.Size([2, 20480])
18104
+ batch tensor after cp: loss_mask torch.Size([2, 20480])
18105
+ batch tensor after cp: attention_mask torch.Size([2, 1, 20480, 81920])
18106
+ batch tensor after cp: position_ids torch.Size([2, 20480])
18107
+ Start exporting trace 7
18108
+ Done exporting trace 7
18109
+ [2025-06-21 21:35:04] iteration 8/ 10 | consumed samples: 8 | elapsed time per iteration (ms): 8247.0 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 33554432.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
attnserver.run_attnserver.slurm.sh.343221.err.log CHANGED
@@ -19806,3 +19806,668 @@ W0621 21:33:05.403000 764266 site-packages/torch/distributed/run.py:766] *******
19806
  warnings.warn(
19807
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
19808
  warnings.warn(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19806
  warnings.warn(
19807
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
19808
  warnings.warn(
19809
+ [rank14]: Traceback (most recent call last):
19810
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
19811
+ [rank14]: pretrain(
19812
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
19813
+ [rank14]: iteration, num_floating_point_operations_so_far = train(
19814
+ [rank14]: ^^^^^^
19815
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
19816
+ [rank14]: ) = train_step(
19817
+ [rank14]: ^^^^^^^^^^^
19818
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
19819
+ [rank14]: losses_reduced = forward_backward_func(
19820
+ [rank14]: ^^^^^^^^^^^^^^^^^^^^^^
19821
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
19822
+ [rank14]: output_tensor, num_tokens = forward_step(
19823
+ [rank14]: ^^^^^^^^^^^^^
19824
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
19825
+ [rank14]: output_tensor, loss_func = forward_step_func(data_iterator, model)
19826
+ [rank14]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19827
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
19828
+ [rank14]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
19829
+ [rank14]: ^^^^^^^^^^^^^^^^^^^^^^^^
19830
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
19831
+ [rank14]: batch = next(global_batches)
19832
+ [rank14]: ^^^^^^^^^^^^^^^^^^^^
19833
+ [rank14]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
19834
+ [rank14]: attention_mask = torch.ones(
19835
+ [rank14]: ^^^^^^^^^^^
19836
+ [rank14]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 53.90 GiB is free. Including non-PyTorch memory, this process has 85.91 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
19837
+ [rank11]: Traceback (most recent call last):
19838
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
19839
+ [rank11]: pretrain(
19840
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
19841
+ [rank11]: iteration, num_floating_point_operations_so_far = train(
19842
+ [rank11]: ^^^^^^
19843
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
19844
+ [rank11]: ) = train_step(
19845
+ [rank11]: ^^^^^^^^^^^
19846
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
19847
+ [rank11]: losses_reduced = forward_backward_func(
19848
+ [rank11]: ^^^^^^^^^^^^^^^^^^^^^^
19849
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
19850
+ [rank11]: output_tensor, num_tokens = forward_step(
19851
+ [rank11]: ^^^^^^^^^^^^^
19852
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
19853
+ [rank11]: output_tensor, loss_func = forward_step_func(data_iterator, model)
19854
+ [rank11]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19855
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
19856
+ [rank11]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
19857
+ [rank11]: ^^^^^^^^^^^^^^^^^^^^^^^^
19858
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
19859
+ [rank11]: batch = next(global_batches)
19860
+ [rank11]: ^^^^^^^^^^^^^^^^^^^^
19861
+ [rank11]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
19862
+ [rank11]: attention_mask = torch.ones(
19863
+ [rank11]: ^^^^^^^^^^^
19864
+ [rank11]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 53.91 GiB is free. Including non-PyTorch memory, this process has 85.89 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
19865
+ [rank5]: Traceback (most recent call last):
19866
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
19867
+ [rank5]: pretrain(
19868
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
19869
+ [rank5]: iteration, num_floating_point_operations_so_far = train(
19870
+ [rank5]: ^^^^^^
19871
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
19872
+ [rank5]: ) = train_step(
19873
+ [rank5]: ^^^^^^^^^^^
19874
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
19875
+ [rank5]: losses_reduced = forward_backward_func(
19876
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^
19877
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
19878
+ [rank5]: output_tensor, num_tokens = forward_step(
19879
+ [rank5]: ^^^^^^^^^^^^^
19880
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
19881
+ [rank5]: output_tensor, loss_func = forward_step_func(data_iterator, model)
19882
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19883
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
19884
+ [rank5]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
19885
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^
19886
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
19887
+ [rank5]: batch = next(global_batches)
19888
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^
19889
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
19890
+ [rank5]: attention_mask = torch.ones(
19891
+ [rank5]: ^^^^^^^^^^^
19892
+ [rank5]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 53.77 GiB is free. Including non-PyTorch memory, this process has 86.03 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
19893
+ [rank8]: Traceback (most recent call last):
19894
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
19895
+ [rank8]: pretrain(
19896
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
19897
+ [rank8]: iteration, num_floating_point_operations_so_far = train(
19898
+ [rank8]: ^^^^^^
19899
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
19900
+ [rank8]: ) = train_step(
19901
+ [rank8]: ^^^^^^^^^^^
19902
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
19903
+ [rank8]: losses_reduced = forward_backward_func(
19904
+ [rank8]: ^^^^^^^^^^^^^^^^^^^^^^
19905
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
19906
+ [rank8]: output_tensor, num_tokens = forward_step(
19907
+ [rank8]: ^^^^^^^^^^^^^
19908
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
19909
+ [rank8]: output_tensor, loss_func = forward_step_func(data_iterator, model)
19910
+ [rank8]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19911
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
19912
+ [rank8]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
19913
+ [rank8]: ^^^^^^^^^^^^^^^^^^^^^^^^
19914
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
19915
+ [rank8]: batch = next(global_batches)
19916
+ [rank8]: ^^^^^^^^^^^^^^^^^^^^
19917
+ [rank8]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
19918
+ [rank8]: attention_mask = torch.ones(
19919
+ [rank8]: ^^^^^^^^^^^
19920
+ [rank8]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 52.87 GiB is free. Including non-PyTorch memory, this process has 86.91 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 1.07 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
19921
+ [rank10]: Traceback (most recent call last):
19922
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
19923
+ [rank10]: pretrain(
19924
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
19925
+ [rank10]: iteration, num_floating_point_operations_so_far = train(
19926
+ [rank10]: ^^^^^^
19927
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
19928
+ [rank10]: ) = train_step(
19929
+ [rank10]: ^^^^^^^^^^^
19930
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
19931
+ [rank10]: losses_reduced = forward_backward_func(
19932
+ [rank10]: ^^^^^^^^^^^^^^^^^^^^^^
19933
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
19934
+ [rank10]: output_tensor, num_tokens = forward_step(
19935
+ [rank10]: ^^^^^^^^^^^^^
19936
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
19937
+ [rank10]: output_tensor, loss_func = forward_step_func(data_iterator, model)
19938
+ [rank10]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19939
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
19940
+ [rank10]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
19941
+ [rank10]: ^^^^^^^^^^^^^^^^^^^^^^^^
19942
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
19943
+ [rank10]: batch = next(global_batches)
19944
+ [rank10]: ^^^^^^^^^^^^^^^^^^^^
19945
+ [rank10]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
19946
+ [rank10]: attention_mask = torch.ones(
19947
+ [rank10]: ^^^^^^^^^^^
19948
+ [rank10]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 53.90 GiB is free. Including non-PyTorch memory, this process has 85.91 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
19949
+ [rank4]: Traceback (most recent call last):
19950
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
19951
+ [rank4]: pretrain(
19952
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
19953
+ [rank4]: iteration, num_floating_point_operations_so_far = train(
19954
+ [rank4]: ^^^^^^
19955
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
19956
+ [rank4]: ) = train_step(
19957
+ [rank4]: ^^^^^^^^^^^
19958
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
19959
+ [rank4]: losses_reduced = forward_backward_func(
19960
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^
19961
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
19962
+ [rank4]: output_tensor, num_tokens = forward_step(
19963
+ [rank4]: ^^^^^^^^^^^^^
19964
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
19965
+ [rank4]: output_tensor, loss_func = forward_step_func(data_iterator, model)
19966
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19967
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
19968
+ [rank4]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
19969
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^^^
19970
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
19971
+ [rank4]: batch = next(global_batches)
19972
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^
19973
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
19974
+ [rank4]: attention_mask = torch.ones(
19975
+ [rank4]: ^^^^^^^^^^^
19976
+ [rank4]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 53.76 GiB is free. Including non-PyTorch memory, this process has 86.02 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
19977
+ [rank12]: Traceback (most recent call last):
19978
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
19979
+ [rank12]: pretrain(
19980
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
19981
+ [rank12]: iteration, num_floating_point_operations_so_far = train(
19982
+ [rank12]: ^^^^^^
19983
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
19984
+ [rank12]: ) = train_step(
19985
+ [rank12]: ^^^^^^^^^^^
19986
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
19987
+ [rank12]: losses_reduced = forward_backward_func(
19988
+ [rank12]: ^^^^^^^^^^^^^^^^^^^^^^
19989
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
19990
+ [rank12]: output_tensor, num_tokens = forward_step(
19991
+ [rank12]: ^^^^^^^^^^^^^
19992
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
19993
+ [rank12]: output_tensor, loss_func = forward_step_func(data_iterator, model)
19994
+ [rank12]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19995
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
19996
+ [rank12]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
19997
+ [rank12]: ^^^^^^^^^^^^^^^^^^^^^^^^
19998
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
19999
+ [rank12]: batch = next(global_batches)
20000
+ [rank12]: ^^^^^^^^^^^^^^^^^^^^
20001
+ [rank12]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
20002
+ [rank12]: attention_mask = torch.ones(
20003
+ [rank12]: ^^^^^^^^^^^
20004
+ [rank12]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 53.87 GiB is free. Including non-PyTorch memory, this process has 85.91 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
20005
+ [rank9]: Traceback (most recent call last):
20006
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
20007
+ [rank9]: pretrain(
20008
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
20009
+ [rank9]: iteration, num_floating_point_operations_so_far = train(
20010
+ [rank9]: ^^^^^^
20011
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
20012
+ [rank9]: ) = train_step(
20013
+ [rank9]: ^^^^^^^^^^^
20014
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
20015
+ [rank9]: losses_reduced = forward_backward_func(
20016
+ [rank9]: ^^^^^^^^^^^^^^^^^^^^^^
20017
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
20018
+ [rank9]: output_tensor, num_tokens = forward_step(
20019
+ [rank9]: ^^^^^^^^^^^^^
20020
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
20021
+ [rank9]: output_tensor, loss_func = forward_step_func(data_iterator, model)
20022
+ [rank9]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20023
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
20024
+ [rank9]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
20025
+ [rank9]: ^^^^^^^^^^^^^^^^^^^^^^^^
20026
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
20027
+ [rank9]: batch = next(global_batches)
20028
+ [rank9]: ^^^^^^^^^^^^^^^^^^^^
20029
+ [rank9]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
20030
+ [rank9]: attention_mask = torch.ones(
20031
+ [rank9]: ^^^^^^^^^^^
20032
+ [rank9]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 53.91 GiB is free. Including non-PyTorch memory, this process has 85.89 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
20033
+ [rank3]: Traceback (most recent call last):
20034
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
20035
+ [rank3]: pretrain(
20036
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
20037
+ [rank3]: iteration, num_floating_point_operations_so_far = train(
20038
+ [rank3]: ^^^^^^
20039
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
20040
+ [rank3]: ) = train_step(
20041
+ [rank3]: ^^^^^^^^^^^
20042
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
20043
+ [rank3]: losses_reduced = forward_backward_func(
20044
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^
20045
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
20046
+ [rank3]: output_tensor, num_tokens = forward_step(
20047
+ [rank3]: ^^^^^^^^^^^^^
20048
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
20049
+ [rank3]: output_tensor, loss_func = forward_step_func(data_iterator, model)
20050
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20051
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
20052
+ [rank3]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
20053
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^
20054
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
20055
+ [rank3]: batch = next(global_batches)
20056
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^
20057
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
20058
+ [rank3]: attention_mask = torch.ones(
20059
+ [rank3]: ^^^^^^^^^^^
20060
+ [rank3]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 53.77 GiB is free. Including non-PyTorch memory, this process has 86.03 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
20061
+ [rank15]: Traceback (most recent call last):
20062
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
20063
+ [rank15]: pretrain(
20064
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
20065
+ [rank15]: iteration, num_floating_point_operations_so_far = train(
20066
+ [rank15]: ^^^^^^
20067
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
20068
+ [rank15]: ) = train_step(
20069
+ [rank15]: ^^^^^^^^^^^
20070
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
20071
+ [rank15]: losses_reduced = forward_backward_func(
20072
+ [rank15]: ^^^^^^^^^^^^^^^^^^^^^^
20073
+ [rank0]: Traceback (most recent call last):
20074
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
20075
+ [rank0]: pretrain(
20076
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
20077
+ [rank0]: iteration, num_floating_point_operations_so_far = train(
20078
+ [rank0]: ^^^^^^
20079
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
20080
+ [rank0]: ) = train_step(
20081
+ [rank0]: ^^^^^^^^^^^
20082
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
20083
+ [rank0]: losses_reduced = forward_backward_func(
20084
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^
20085
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
20086
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
20087
+ [rank15]: output_tensor, num_tokens = forward_step(
20088
+ [rank15]: ^^^^^^^^^^^^^
20089
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
20090
+ [rank15]: output_tensor, loss_func = forward_step_func(data_iterator, model)
20091
+ [rank15]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20092
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
20093
+ [rank15]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
20094
+ [rank15]: ^^^^^^^^^^^^^^^^^^^^^^^^
20095
+ [rank0]: output_tensor, num_tokens = forward_step(
20096
+ [rank0]: ^^^^^^^^^^^^^
20097
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
20098
+ [rank0]: output_tensor, loss_func = forward_step_func(data_iterator, model)
20099
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20100
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
20101
+ [rank0]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
20102
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^
20103
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
20104
+ [rank0]: batch = next(global_batches)
20105
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^
20106
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
20107
+ [rank15]: batch = next(global_batches)
20108
+ [rank15]: ^^^^^^^^^^^^^^^^^^^^
20109
+ [rank15]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
20110
+ [rank15]: attention_mask = torch.ones(
20111
+ [rank15]: ^^^^^^^^^^^
20112
+ [rank15]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 53.91 GiB is free. Including non-PyTorch memory, this process has 85.89 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
20113
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
20114
+ [rank0]: attention_mask = torch.ones(
20115
+ [rank0]: ^^^^^^^^^^^
20116
+ [rank0]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 53.76 GiB is free. Including non-PyTorch memory, this process has 86.02 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
20117
+ [rank13]: Traceback (most recent call last):
20118
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
20119
+ [rank13]: pretrain(
20120
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
20121
+ [rank13]: iteration, num_floating_point_operations_so_far = train(
20122
+ [rank13]: ^^^^^^
20123
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
20124
+ [rank13]: ) = train_step(
20125
+ [rank13]: ^^^^^^^^^^^
20126
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
20127
+ [rank13]: losses_reduced = forward_backward_func(
20128
+ [rank13]: ^^^^^^^^^^^^^^^^^^^^^^
20129
+ [rank1]: Traceback (most recent call last):
20130
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
20131
+ [rank1]: pretrain(
20132
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
20133
+ [rank1]: iteration, num_floating_point_operations_so_far = train(
20134
+ [rank1]: ^^^^^^
20135
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
20136
+ [rank1]: ) = train_step(
20137
+ [rank1]: ^^^^^^^^^^^
20138
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
20139
+ [rank1]: losses_reduced = forward_backward_func(
20140
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^
20141
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
20142
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
20143
+ [rank13]: output_tensor, num_tokens = forward_step(
20144
+ [rank13]: ^^^^^^^^^^^^^
20145
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
20146
+ [rank13]: output_tensor, loss_func = forward_step_func(data_iterator, model)
20147
+ [rank13]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20148
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
20149
+ [rank13]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
20150
+ [rank13]: ^^^^^^^^^^^^^^^^^^^^^^^^
20151
+ [rank1]: output_tensor, num_tokens = forward_step(
20152
+ [rank1]: ^^^^^^^^^^^^^
20153
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
20154
+ [rank1]: output_tensor, loss_func = forward_step_func(data_iterator, model)
20155
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20156
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
20157
+ [rank1]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
20158
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^
20159
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
20160
+ [rank1]: batch = next(global_batches)
20161
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^
20162
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
20163
+ [rank13]: batch = next(global_batches)
20164
+ [rank13]: ^^^^^^^^^^^^^^^^^^^^
20165
+ [rank13]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
20166
+ [rank13]: attention_mask = torch.ones(
20167
+ [rank13]: ^^^^^^^^^^^
20168
+ [rank13]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 53.91 GiB is free. Including non-PyTorch memory, this process has 85.89 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
20169
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
20170
+ [rank1]: attention_mask = torch.ones(
20171
+ [rank1]: ^^^^^^^^^^^
20172
+ [rank1]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 53.77 GiB is free. Including non-PyTorch memory, this process has 86.03 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
20173
+ [rank6]: Traceback (most recent call last):
20174
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
20175
+ [rank6]: pretrain(
20176
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
20177
+ [rank6]: iteration, num_floating_point_operations_so_far = train(
20178
+ [rank6]: ^^^^^^
20179
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
20180
+ [rank6]: ) = train_step(
20181
+ [rank6]: ^^^^^^^^^^^
20182
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
20183
+ [rank6]: losses_reduced = forward_backward_func(
20184
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^
20185
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
20186
+ [rank6]: output_tensor, num_tokens = forward_step(
20187
+ [rank6]: ^^^^^^^^^^^^^
20188
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
20189
+ [rank6]: output_tensor, loss_func = forward_step_func(data_iterator, model)
20190
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20191
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
20192
+ [rank6]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
20193
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^^^
20194
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
20195
+ [rank6]: batch = next(global_batches)
20196
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^
20197
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
20198
+ [rank6]: attention_mask = torch.ones(
20199
+ [rank6]: ^^^^^^^^^^^
20200
+ [rank6]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 53.79 GiB is free. Including non-PyTorch memory, this process has 86.02 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
20201
+ [rank7]: Traceback (most recent call last):
20202
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
20203
+ [rank7]: pretrain(
20204
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
20205
+ [rank7]: iteration, num_floating_point_operations_so_far = train(
20206
+ [rank7]: ^^^^^^
20207
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
20208
+ [rank7]: ) = train_step(
20209
+ [rank7]: ^^^^^^^^^^^
20210
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
20211
+ [rank7]: losses_reduced = forward_backward_func(
20212
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^
20213
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
20214
+ [rank7]: output_tensor, num_tokens = forward_step(
20215
+ [rank7]: ^^^^^^^^^^^^^
20216
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
20217
+ [rank7]: output_tensor, loss_func = forward_step_func(data_iterator, model)
20218
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20219
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
20220
+ [rank7]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
20221
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^^^
20222
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
20223
+ [rank7]: batch = next(global_batches)
20224
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^
20225
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
20226
+ [rank7]: attention_mask = torch.ones(
20227
+ [rank7]: ^^^^^^^^^^^
20228
+ [rank7]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 53.77 GiB is free. Including non-PyTorch memory, this process has 86.03 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
20229
+ [rank2]: Traceback (most recent call last):
20230
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
20231
+ [rank2]: pretrain(
20232
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 863, in pretrain
20233
+ [rank2]: iteration, num_floating_point_operations_so_far = train(
20234
+ [rank2]: ^^^^^^
20235
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 2229, in train
20236
+ [rank2]: ) = train_step(
20237
+ [rank2]: ^^^^^^^^^^^
20238
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 1382, in train_step
20239
+ [rank2]: losses_reduced = forward_backward_func(
20240
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^
20241
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 518, in forward_backward_no_pipelining
20242
+ [rank2]: output_tensor, num_tokens = forward_step(
20243
+ [rank2]: ^^^^^^^^^^^^^
20244
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/pipeline_parallel/schedules.py", line 289, in forward_step
20245
+ [rank2]: output_tensor, loss_func = forward_step_func(data_iterator, model)
20246
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20247
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step
20248
+ [rank2]: (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)
20249
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^
20250
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch
20251
+ [rank2]: batch = next(global_batches)
20252
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^
20253
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches
20254
+ [rank2]: attention_mask = torch.ones(
20255
+ [rank2]: ^^^^^^^^^^^
20256
+ [rank2]: torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 53.79 GiB is free. Including non-PyTorch memory, this process has 86.02 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
20257
+ [rank3]:[W621 21:34:15.746861009 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
20258
+ [rank1]:[W621 21:34:15.752428945 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
20259
+ [rank2]:[W621 21:34:15.819194689 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
20260
+ [rank13]:[W621 21:34:15.634394649 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
20261
+ [rank14]:[W621 21:34:15.635955648 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
20262
+ [rank15]:[W621 21:34:15.640834016 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
20263
+ [rank6]:[W621 21:34:15.176127394 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
20264
+ [rank9]:[W621 21:34:15.775350643 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
20265
+ [rank5]:[W621 21:34:15.184536292 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
20266
+ [rank11]:[W621 21:34:15.802086113 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
20267
+ [rank10]:[W621 21:34:15.888555110 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
20268
+ [rank7]:[W621 21:34:16.513018370 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
20269
+ W0621 21:34:17.171000 1744676 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1744745 closing signal SIGTERM
20270
+ W0621 21:34:17.175000 1744676 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1744746 closing signal SIGTERM
20271
+ W0621 21:34:17.176000 1744676 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1744747 closing signal SIGTERM
20272
+ W0621 21:34:17.176000 1744676 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1744748 closing signal SIGTERM
20273
+ W0621 21:34:17.176000 1744676 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1744749 closing signal SIGTERM
20274
+ W0621 21:34:17.179000 1744676 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1744751 closing signal SIGTERM
20275
+ W0621 21:34:17.179000 1744676 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1744752 closing signal SIGTERM
20276
+ W0621 21:34:17.401000 764266 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 764338 closing signal SIGTERM
20277
+ W0621 21:34:17.405000 764266 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 764339 closing signal SIGTERM
20278
+ W0621 21:34:17.406000 764266 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 764340 closing signal SIGTERM
20279
+ W0621 21:34:17.406000 764266 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 764341 closing signal SIGTERM
20280
+ W0621 21:34:17.407000 764266 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 764342 closing signal SIGTERM
20281
+ W0621 21:34:17.409000 764266 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 764343 closing signal SIGTERM
20282
+ W0621 21:34:17.410000 764266 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 764345 closing signal SIGTERM
20283
+ E0621 21:34:20.400000 1744676 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 5 (pid: 1744750) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
20284
+ Traceback (most recent call last):
20285
+ File "<frozen runpy>", line 198, in _run_module_as_main
20286
+ File "<frozen runpy>", line 88, in _run_code
20287
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
20288
+ main()
20289
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
20290
+ return arg(*args, **kwargs)
20291
+ ^^^^^^^^^^^^^^^^^^^^
20292
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
20293
+ launch(args)
20294
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
20295
+ run(args)
20296
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
20297
+ elastic_launch(
20298
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
20299
+ return launch_agent(self._config, self._entrypoint, list(args))
20300
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20301
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
20302
+ raise ChildFailedError(
20303
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
20304
+ ============================================================
20305
+ ./pretrain_gpt_profile.py FAILED
20306
+ ------------------------------------------------------------
20307
+ Failures:
20308
+ <NO_OTHER_FAILURES>
20309
+ ------------------------------------------------------------
20310
+ Root Cause (first observed failure):
20311
+ [0]:
20312
+ time : 2025-06-21_21:34:17
20313
+ host : fs-mbz-gpu-717
20314
+ rank : 13 (local_rank: 5)
20315
+ exitcode : 1 (pid: 1744750)
20316
+ error_file: <N/A>
20317
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
20318
+ ============================================================
20319
+ + set +x
20320
+ E0621 21:34:21.033000 764266 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 6 (pid: 764344) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
20321
+ Traceback (most recent call last):
20322
+ File "<frozen runpy>", line 198, in _run_module_as_main
20323
+ File "<frozen runpy>", line 88, in _run_code
20324
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
20325
+ main()
20326
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
20327
+ return arg(*args, **kwargs)
20328
+ ^^^^^^^^^^^^^^^^^^^^
20329
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
20330
+ launch(args)
20331
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
20332
+ run(args)
20333
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
20334
+ elastic_launch(
20335
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
20336
+ return launch_agent(self._config, self._entrypoint, list(args))
20337
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20338
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
20339
+ raise ChildFailedError(
20340
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
20341
+ ============================================================
20342
+ ./pretrain_gpt_profile.py FAILED
20343
+ ------------------------------------------------------------
20344
+ Failures:
20345
+ <NO_OTHER_FAILURES>
20346
+ ------------------------------------------------------------
20347
+ Root Cause (first observed failure):
20348
+ [0]:
20349
+ time : 2025-06-21_21:34:17
20350
+ host : fs-mbz-gpu-600
20351
+ rank : 6 (local_rank: 6)
20352
+ exitcode : 1 (pid: 764344)
20353
+ error_file: <N/A>
20354
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
20355
+ ============================================================
20356
+ + set +x
20357
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
20358
+ + export PROF_CTX_LENGTH=40960
20359
+ + PROF_CTX_LENGTH=40960
20360
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L40960*tp4.cp4.bs4.json'
20361
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L40960*tp4.cp4.bs4.json' ']'
20362
+ + echo 'Running ctx_length=40960, TP_SIZE=4, CP_SIZE=4, BATCH_SIZE=4'
20363
+ + srun bash ./attnserver.sh
20364
+ + which python3
20365
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 0 --rdzv_id 343221 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-600:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 40960 --max-position-embeddings 40960 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
20366
+ + which python3
20367
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 1 --rdzv_id 343221 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-600:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 40960 --max-position-embeddings 40960 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
20368
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
20369
+ and will be removed in future. Use torchrun.
20370
+ Note that --use-env is set by default in torchrun.
20371
+ If your script expects `--local-rank` argument to be set, please
20372
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
20373
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
20374
+ further instructions
20375
+
20376
+ main()
20377
+ W0621 21:34:24.137000 767223 site-packages/torch/distributed/run.py:766]
20378
+ W0621 21:34:24.137000 767223 site-packages/torch/distributed/run.py:766] *****************************************
20379
+ W0621 21:34:24.137000 767223 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
20380
+ W0621 21:34:24.137000 767223 site-packages/torch/distributed/run.py:766] *****************************************
20381
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
20382
+ and will be removed in future. Use torchrun.
20383
+ Note that --use-env is set by default in torchrun.
20384
+ If your script expects `--local-rank` argument to be set, please
20385
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
20386
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
20387
+ further instructions
20388
+
20389
+ main()
20390
+ W0621 21:34:24.210000 1747549 site-packages/torch/distributed/run.py:766]
20391
+ W0621 21:34:24.210000 1747549 site-packages/torch/distributed/run.py:766] *****************************************
20392
+ W0621 21:34:24.210000 1747549 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
20393
+ W0621 21:34:24.210000 1747549 site-packages/torch/distributed/run.py:766] *****************************************
20394
+ [rank2]:[W621 21:34:47.974858199 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20395
+ [rank3]:[W621 21:34:47.975554961 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20396
+ [rank1]:[W621 21:34:47.975568324 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20397
+ [rank6]:[W621 21:34:47.976134250 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20398
+ [rank4]:[W621 21:34:47.976140465 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20399
+ [rank5]:[W621 21:34:47.977593798 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20400
+ [rank13]:[W621 21:34:47.568137561 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 13] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20401
+ [rank7]:[W621 21:34:47.983186626 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20402
+ [rank14]:[W621 21:34:47.577350389 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 14] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20403
+ [rank11]:[W621 21:34:47.577379910 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 11] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20404
+ [rank10]:[W621 21:34:47.577451926 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 10] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20405
+ [rank15]:[W621 21:34:47.577469704 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 15] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20406
+ [rank12]:[W621 21:34:47.577811558 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 12] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20407
+ [rank9]:[W621 21:34:47.578294751 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 9] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20408
+ [rank8]:[W621 21:34:47.663829529 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 8] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20409
+ [rank0]:[W621 21:34:47.121298220 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
20410
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20411
+ warnings.warn(
20412
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20413
+ warnings.warn(
20414
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20415
+ warnings.warn(
20416
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20417
+ warnings.warn(
20418
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20419
+ warnings.warn(
20420
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20421
+ warnings.warn(
20422
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20423
+ warnings.warn(
20424
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20425
+ warnings.warn(
20426
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20427
+ warnings.warn(
20428
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20429
+ warnings.warn(
20430
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20431
+ warnings.warn(
20432
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20433
+ warnings.warn(
20434
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20435
+ warnings.warn(
20436
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20437
+ warnings.warn(
20438
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20439
+ warnings.warn(
20440
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
20441
+ warnings.warn(
20442
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20443
+ warnings.warn(
20444
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20445
+ warnings.warn(
20446
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20447
+ warnings.warn(
20448
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20449
+ warnings.warn(
20450
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20451
+ warnings.warn(
20452
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20453
+ warnings.warn(
20454
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20455
+ warnings.warn(
20456
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20457
+ warnings.warn(
20458
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20459
+ warnings.warn(
20460
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20461
+ warnings.warn(
20462
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20463
+ warnings.warn(
20464
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20465
+ warnings.warn(
20466
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20467
+ warnings.warn(
20468
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20469
+ warnings.warn(
20470
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20471
+ warnings.warn(
20472
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
20473
+ warnings.warn(
attnserver.run_attnserver.slurm.sh.343221.out.log CHANGED
@@ -12093,3 +12093,756 @@ batch tensor after cp: labels torch.Size([4, 32768])
12093
  batch tensor after cp: loss_mask torch.Size([4, 32768])
12094
  batch tensor after cp: attention_mask torch.Size([4, 1, 32768, 131072])
12095
  batch tensor after cp: position_ids torch.Size([4, 32768])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12093
  batch tensor after cp: loss_mask torch.Size([4, 32768])
12094
  batch tensor after cp: attention_mask torch.Size([4, 1, 32768, 131072])
12095
  batch tensor after cp: position_ids torch.Size([4, 32768])
12096
+ Start exporting trace 0
12097
+ Done exporting trace 0
12098
+ Number of parameters in transformer block in billions: 0.35
12099
+ Number of parameters in embedding layers in billions: 0.21
12100
+ Total number of parameters in billions: 0.56
12101
+ Number of parameters in most loaded shard in billions: 0.1400
12102
+ Theoretical memory footprints: weight and optimizer=2403.18 MB
12103
+ [2025-06-21 21:34:13] iteration 1/ 10 | consumed samples: 1 | elapsed time per iteration (ms): 37232.3 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 4294967296.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
12104
+ [Rank 1] (after 1 iterations) memory (MB) | allocated: 85227.16064453125 | max allocated: 111802.65283203125 | reserved: 116506.0 | max reserved: 116506.0
12105
+ [Rank 0] (after 1 iterations) memory (MB) | allocated: 85227.16064453125 | max allocated: 111802.65283203125 | reserved: 115482.0 | max reserved: 115482.0
12106
+ [Rank 11] (after 1 iterations) memory (MB) | allocated: 85226.16064453125 | max allocated: 111802.65283203125 | reserved: 116782.0 | max reserved: 116782.0
12107
+ [Rank 14] (after 1 iterations) memory (MB) | allocated: 85226.16064453125 | max allocated: 111802.65283203125 | reserved: 116910.0 | max reserved: 116910.0
12108
+ [Rank 2] (after 1 iterations) memory (MB) | allocated: 85227.16064453125 | max allocated: 111802.65283203125 | reserved: 116506.0 | max reserved: 116506.0
12109
+ [Rank 13] (after 1 iterations) memory (MB) | allocated: 85226.16064453125 | max allocated: 111802.65283203125 | reserved: 116910.0 | max reserved: 116910.0
12110
+ [Rank 10] (after 1 iterations) memory (MB) | allocated: 85226.16064453125 | max allocated: 111802.65283203125 | reserved: 116782.0 | max reserved: 116782.0
12111
+ [Rank 7] (after 1 iterations) memory (MB) | allocated: 85227.16064453125 | max allocated: 111802.65283203125 | reserved: 116654.0 | max reserved: 116654.0
12112
+ [Rank 15] (after 1 iterations) memory (MB) | allocated: 85226.16064453125 | max allocated: 111802.65283203125 | reserved: 116910.0 | max reserved: 116910.0
12113
+ [Rank 6] (after 1 iterations) memory (MB) | allocated: 85227.16064453125 | max allocated: 111802.65283203125 | reserved: 116654.0 | max reserved: 116654.0
12114
+ [Rank 9] (after 1 iterations) memory (MB) | allocated: 85226.16064453125 | max allocated: 111802.65283203125 | reserved: 116782.0 | max reserved: 116782.0[Rank 12] (after 1 iterations) memory (MB) | allocated: 85226.16064453125 | max allocated: 111802.65283203125 | reserved: 115886.0 | max reserved: 115886.0
12115
+
12116
+ [Rank 3] (after 1 iterations) memory (MB) | allocated: 85227.16064453125 | max allocated: 111802.65283203125 | reserved: 116506.0 | max reserved: 116506.0[Rank 4] (after 1 iterations) memory (MB) | allocated: 85227.16064453125 | max allocated: 111802.65283203125 | reserved: 115630.0 | max reserved: 115630.0
12117
+
12118
+ [Rank 8] (after 1 iterations) memory (MB) | allocated: 85227.16064453125 | max allocated: 111802.65283203125 | reserved: 115886.0 | max reserved: 115886.0
12119
+ [Rank 5] (after 1 iterations) memory (MB) | allocated: 85227.16064453125 | max allocated: 111802.65283203125 | reserved: 116654.0 | max reserved: 116654.0
12120
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 53.90 GiB is free. Including non-PyTorch memory, this process has 85.91 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12121
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 53.90 GiB is free. Including non-PyTorch memory, this process has 85.91 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12122
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 53.91 GiB is free. Including non-PyTorch memory, this process has 85.89 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12123
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 53.91 GiB is free. Including non-PyTorch memory, this process has 85.89 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12124
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 52.87 GiB is free. Including non-PyTorch memory, this process has 86.91 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 1.07 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12125
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 53.77 GiB is free. Including non-PyTorch memory, this process has 86.03 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12126
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 52.87 GiB is free. Including non-PyTorch memory, this process has 86.91 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 1.07 GiB is r['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 53.77 GiB is free. Including non-PyTorch memory, this process has 86.03 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB iseserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12127
+ reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12128
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 53.90 GiB is free. Including non-PyTorch memory, this process has 85.91 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12129
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 53.90 GiB is free. Including non-PyTorch memory, this process has 85.91 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12130
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 53.76 GiB is free. Including non-PyTorch memory, this process has 86.02 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12131
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 53.76 GiB is free. Including non-PyTorch memory, this process has 86.02 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12132
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 53.87 GiB is free. Including non-PyTorch memory, this process has 85.91 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12133
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 53.77 GiB is free. Including non-PyTorch memory, this process has 86.03 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12134
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 4 has a total capacity of 139.81 GiB of which 53.87 GiB is free. Including non-PyTorch memory, this process has 85.91 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 3 has a total capacity of 139.81 GiB of which 53.77 GiB is free. Including non-PyTorch memory, this process has 86.03 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB isreserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12135
+ reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12136
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 53.91 GiB is free. Including non-PyTorch memory, this process has 85.89 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12137
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 53.91 GiB is free. Including non-PyTorch memory, this process has 85.89 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12138
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 53.76 GiB is free. Including non-PyTorch memory, this process has 86.02 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12139
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 0 has a total capacity of 139.81 GiB of which 53.76 GiB is free. Including non-PyTorch memory, this process has 86.02 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12140
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 53.77 GiB is free. Including non-PyTorch memory, this process has 86.03 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12141
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 1 has a total capacity of 139.81 GiB of which 53.77 GiB is free. Including non-PyTorch memory, this process has 86.03 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12142
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 53.91 GiB is free. Including non-PyTorch memory, this process has 85.89 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12143
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 53.91 GiB is free. Including non-PyTorch memory, this process has 85.89 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12144
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 53.91 GiB is free. Including non-PyTorch memory, this process has 85.89 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12145
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 53.79 GiB is free. Including non-PyTorch memory, this process has 86.02 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12146
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 5 has a total capacity of 139.81 GiB of which 53.91 GiB is free. Including non-PyTorch memory, this process has 85.89 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 72.10 MiB is ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 6 has a total capacity of 139.81 GiB of which 53.79 GiB is free. Including non-PyTorch memory, this process has 86.02 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB isreserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12147
+ reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12148
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 53.77 GiB is free. Including non-PyTorch memory, this process has 86.03 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12149
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 7 has a total capacity of 139.81 GiB of which 53.77 GiB is free. Including non-PyTorch memory, this process has 86.03 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12150
+ WARNING:megatron.core.utils:CUDA out of memory. Tried to allocate 64.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 53.79 GiB is free. Including non-PyTorch memory, this process has 86.02 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
12151
+ ['Traceback (most recent call last):\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 446, in forward_step\n (tokens, labels, loss_mask, attention_mask, position_ids), token_lens = get_batch(data_iterator)\n ^^^^^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 284, in get_batch\n batch = next(global_batches)\n ^^^^^^^^^^^^^^^^^^^^\n', ' File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 226, in setup_batches\n attention_mask = torch.ones(\n ^^^^^^^^^^^\n', 'torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 64.00 GiB. GPU 2 has a total capacity of 139.81 GiB of which 53.79 GiB is free. Including non-PyTorch memory, this process has 86.02 GiB memory in use. Of the allocated memory 82.21 GiB is allocated by PyTorch, and 200.10 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)\n']
12152
+ Running ctx_length=40960, TP_SIZE=4, CP_SIZE=4, BATCH_SIZE=4
12153
+ Cleaning up checkpoint directory: gpt-checkpoint
12154
+ --------------------------------
12155
+ CTX_LENGTH: 40960
12156
+ TP_SIZE: 4
12157
+ CP_SIZE: 4
12158
+ CHECKPOINT_PATH: gpt-checkpoint
12159
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
12160
+ --------------------------------
12161
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
12162
+ Cleaning up checkpoint directory: gpt-checkpoint
12163
+ --------------------------------
12164
+ CTX_LENGTH: 40960
12165
+ TP_SIZE: 4
12166
+ CP_SIZE: 4
12167
+ CHECKPOINT_PATH: gpt-checkpoint
12168
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
12169
+ --------------------------------
12170
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
12171
+ INFO:megatron.training.initialize:Setting logging level to 0
12172
+ INFO:megatron.training.initialize:Setting logging level to 0
12173
+ INFO:megatron.training.initialize:Setting logging level to 0
12174
+ INFO:megatron.training.initialize:Setting logging level to 0
12175
+ WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written.
12176
+ WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it
12177
+ INFO:megatron.training.initialize:Setting logging level to 0
12178
+ INFO:megatron.training.initialize:Setting logging level to 0
12179
+ INFO:megatron.training.initialize:Setting logging level to 0
12180
+ INFO:megatron.training.initialize:Setting logging level to 0
12181
+ using world size: 16, data-parallel size: 1, context-parallel size: 4, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 4, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0
12182
+ Number of virtual stages per pipeline stage: None
12183
+ WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used
12184
+ using torch.float16 for parameters ...
12185
+ ------------------------ arguments ------------------------
12186
+ account_for_embedding_in_pipeline_split ......... False
12187
+ account_for_loss_in_pipeline_split .............. False
12188
+ accumulate_allreduce_grads_in_fp32 .............. False
12189
+ adam_beta1 ...................................... 0.9
12190
+ adam_beta2 ...................................... 0.999
12191
+ adam_eps ........................................ 1e-08
12192
+ add_bias_linear ................................. True
12193
+ add_position_embedding .......................... True
12194
+ add_qkv_bias .................................... True
12195
+ adlr_autoresume ................................. False
12196
+ adlr_autoresume_interval ........................ 1000
12197
+ align_grad_reduce ............................... True
12198
+ align_param_gather .............................. False
12199
+ app_tag_run_name ................................ None
12200
+ app_tag_run_version ............................. 0.0.0
12201
+ apply_layernorm_1p .............................. False
12202
+ apply_query_key_layer_scaling ................... False
12203
+ apply_residual_connection_post_layernorm ........ False
12204
+ apply_rope_fusion ............................... False
12205
+ async_save ...................................... None
12206
+ async_tensor_model_parallel_allreduce ........... True
12207
+ attention_backend ............................... AttnBackend.auto
12208
+ attention_dropout ............................... 0.1
12209
+ attention_softmax_in_fp32 ....................... False
12210
+ auto_detect_ckpt_format ......................... False
12211
+ barrier_with_L1_time ............................ True
12212
+ bert_binary_head ................................ True
12213
+ bert_embedder_type .............................. megatron
12214
+ bert_load ....................................... None
12215
+ bf16 ............................................ False
12216
+ bias_dropout_fusion ............................. True
12217
+ bias_gelu_fusion ................................ True
12218
+ bias_swiglu_fusion .............................. True
12219
+ biencoder_projection_dim ........................ 0
12220
+ biencoder_shared_query_context_model ............ False
12221
+ block_data_path ................................. None
12222
+ calc_ft_timeouts ................................ False
12223
+ calculate_per_token_loss ........................ False
12224
+ check_for_large_grads ........................... False
12225
+ check_for_nan_in_loss_and_grad .................. False
12226
+ check_for_spiky_loss ............................ False
12227
+ check_weight_hash_across_dp_replicas_interval ... None
12228
+ ckpt_assume_constant_structure .................. False
12229
+ ckpt_convert_format ............................. None
12230
+ ckpt_convert_save ............................... None
12231
+ ckpt_convert_update_legacy_dist_opt_format ...... False
12232
+ ckpt_format ..................................... torch_dist
12233
+ ckpt_fully_parallel_load ........................ False
12234
+ ckpt_fully_parallel_save ........................ True
12235
+ ckpt_fully_parallel_save_deprecated ............. False
12236
+ ckpt_step ....................................... None
12237
+ classes_fraction ................................ 1.0
12238
+ clip_grad ....................................... 1.0
12239
+ clone_scatter_output_in_embedding ............... True
12240
+ config_logger_dir ...............................
12241
+ consumed_train_samples .......................... 0
12242
+ consumed_valid_samples .......................... 0
12243
+ context_parallel_size ........................... 4
12244
+ cp_comm_type .................................... ['p2p']
12245
+ create_attention_mask_in_dataloader ............. True
12246
+ cross_entropy_fusion_impl ....................... native
12247
+ cross_entropy_loss_fusion ....................... False
12248
+ cuda_graph_scope ................................ full
12249
+ cuda_graph_warmup_steps ......................... 3
12250
+ data_args_path .................................. None
12251
+ data_cache_path ................................. None
12252
+ data_parallel_random_init ....................... False
12253
+ data_parallel_sharding_strategy ................. no_shard
12254
+ data_parallel_size .............................. 1
12255
+ data_path ....................................... None
12256
+ data_per_class_fraction ......................... 1.0
12257
+ data_sharding ................................... True
12258
+ dataloader_type ................................. single
12259
+ ddp_average_in_collective ....................... False
12260
+ ddp_bucket_size ................................. None
12261
+ ddp_num_buckets ................................. None
12262
+ ddp_pad_buckets_for_high_nccl_busbw ............. False
12263
+ decoder_first_pipeline_num_layers ............... None
12264
+ decoder_last_pipeline_num_layers ................ None
12265
+ decoder_num_layers .............................. None
12266
+ decoder_seq_length .............................. None
12267
+ decoupled_lr .................................... None
12268
+ decoupled_min_lr ................................ None
12269
+ decrease_batch_size_if_needed ................... False
12270
+ defer_embedding_wgrad_compute ................... False
12271
+ deprecated_use_mcore_models ..................... False
12272
+ deterministic_mode .............................. False
12273
+ dino_bottleneck_size ............................ 256
12274
+ dino_freeze_last_layer .......................... 1
12275
+ dino_head_hidden_size ........................... 2048
12276
+ dino_local_crops_number ......................... 10
12277
+ dino_local_img_size ............................. 96
12278
+ dino_norm_last_layer ............................ False
12279
+ dino_teacher_temp ............................... 0.07
12280
+ dino_warmup_teacher_temp ........................ 0.04
12281
+ dino_warmup_teacher_temp_epochs ................. 30
12282
+ disable_bf16_reduced_precision_matmul ........... False
12283
+ disable_mamba_mem_eff_path ...................... False
12284
+ disable_straggler_on_startup .................... False
12285
+ dist_ckpt_format_deprecated ..................... None
12286
+ dist_ckpt_strictness ............................ assume_ok_unexpected
12287
+ distribute_saved_activations .................... False
12288
+ distributed_backend ............................. nccl
12289
+ distributed_timeout_minutes ..................... 10
12290
+ embedding_path .................................. None
12291
+ empty_unused_memory_level ....................... 0
12292
+ enable_cuda_graph ............................... False
12293
+ enable_ft_package ............................... False
12294
+ enable_gloo_process_groups ...................... True
12295
+ enable_msc ...................................... True
12296
+ enable_one_logger ............................... True
12297
+ encoder_num_layers .............................. 2
12298
+ encoder_pipeline_model_parallel_size ............ 0
12299
+ encoder_seq_length .............................. 40960
12300
+ encoder_tensor_model_parallel_size .............. 0
12301
+ end_weight_decay ................................ 0.1
12302
+ eod_mask_loss ................................... False
12303
+ error_injection_rate ............................ 0
12304
+ error_injection_type ............................ transient_error
12305
+ eval_interval ................................... 16
12306
+ eval_iters ...................................... 1
12307
+ evidence_data_path .............................. None
12308
+ exit_duration_in_mins ........................... None
12309
+ exit_interval ................................... None
12310
+ exit_on_missing_checkpoint ...................... False
12311
+ exit_signal_handler ............................. False
12312
+ exp_avg_dtype ................................... torch.float32
12313
+ exp_avg_sq_dtype ................................ torch.float32
12314
+ expert_model_parallel_size ...................... 1
12315
+ expert_tensor_parallel_size ..................... 4
12316
+ external_cuda_graph ............................. False
12317
+ ffn_hidden_size ................................. 16384
12318
+ finetune ........................................ False
12319
+ first_last_layers_bf16 .......................... False
12320
+ flash_decode .................................... False
12321
+ fp16 ............................................ True
12322
+ fp16_lm_cross_entropy ........................... False
12323
+ fp32_residual_connection ........................ False
12324
+ fp8 ............................................. None
12325
+ fp8_amax_compute_algo ........................... most_recent
12326
+ fp8_amax_history_len ............................ 1
12327
+ fp8_interval .................................... 1
12328
+ fp8_margin ...................................... 0
12329
+ fp8_param_gather ................................ False
12330
+ fp8_recipe ...................................... delayed
12331
+ fp8_wgrad ....................................... True
12332
+ fsdp_double_buffer .............................. False
12333
+ global_batch_size ............................... 1
12334
+ grad_reduce_in_bf16 ............................. False
12335
+ gradient_accumulation_fusion .................... True
12336
+ gradient_reduce_div_fusion ...................... True
12337
+ group_query_attention ........................... True
12338
+ head_lr_mult .................................... 1.0
12339
+ heterogeneous_layers_config_encoded_json ........ None
12340
+ heterogeneous_layers_config_path ................ None
12341
+ hidden_dropout .................................. 0.1
12342
+ hidden_size ..................................... 4096
12343
+ hierarchical_context_parallel_sizes ............. None
12344
+ high_priority_stream_groups ..................... []
12345
+ hybrid_attention_ratio .......................... 0.0
12346
+ hybrid_mlp_ratio ................................ 0.0
12347
+ hybrid_override_pattern ......................... None
12348
+ hysteresis ...................................... 2
12349
+ ict_head_size ................................... None
12350
+ ict_load ........................................ None
12351
+ img_h ........................................... 224
12352
+ img_w ........................................... 224
12353
+ indexer_batch_size .............................. 128
12354
+ indexer_log_interval ............................ 1000
12355
+ inference_batch_times_seqlen_threshold .......... -1
12356
+ inference_dynamic_batching ...................... False
12357
+ inference_dynamic_batching_buffer_guaranteed_fraction 0.2
12358
+ inference_dynamic_batching_buffer_overflow_factor None
12359
+ inference_dynamic_batching_buffer_size_gb ....... 40.0
12360
+ inference_dynamic_batching_chunk_size ........... 256
12361
+ inference_dynamic_batching_max_requests_override None
12362
+ inference_dynamic_batching_max_tokens_override .. None
12363
+ inference_max_batch_size ........................ 8
12364
+ inference_max_seq_length ........................ 2560
12365
+ inference_rng_tracker ........................... False
12366
+ init_method_std ................................. 0.02
12367
+ init_method_xavier_uniform ...................... False
12368
+ init_model_with_meta_device ..................... False
12369
+ initial_loss_scale .............................. 4294967296
12370
+ inprocess_active_world_size ..................... 16
12371
+ inprocess_barrier_timeout ....................... 120
12372
+ inprocess_completion_timeout .................... 120
12373
+ inprocess_empty_cuda_cache ...................... False
12374
+ inprocess_granularity ........................... node
12375
+ inprocess_hard_timeout .......................... 90
12376
+ inprocess_heartbeat_interval .................... 30
12377
+ inprocess_heartbeat_timeout ..................... 60
12378
+ inprocess_last_call_wait ........................ 1
12379
+ inprocess_max_iterations ........................ None
12380
+ inprocess_monitor_process_interval .............. 1.0
12381
+ inprocess_monitor_thread_interval ............... 1.0
12382
+ inprocess_progress_watchdog_interval ............ 1.0
12383
+ inprocess_restart ............................... False
12384
+ inprocess_soft_timeout .......................... 60
12385
+ inprocess_termination_grace_time ................ 1
12386
+ is_hybrid_model ................................. False
12387
+ iter_per_epoch .................................. 1250
12388
+ iterations_to_skip .............................. []
12389
+ keep_fp8_transpose_cache_when_using_custom_fsdp . False
12390
+ kv_channels ..................................... 64
12391
+ kv_lora_rank .................................... 32
12392
+ lazy_mpu_init ................................... None
12393
+ load ............................................ gpt-checkpoint
12394
+ load_model_opt_format ........................... False
12395
+ local_rank ...................................... 0
12396
+ log_interval .................................... 1
12397
+ log_loss_scale_to_tensorboard ................... True
12398
+ log_memory_to_tensorboard ....................... False
12399
+ log_num_zeros_in_grad ........................... False
12400
+ log_params_norm ................................. False
12401
+ log_progress .................................... False
12402
+ log_straggler ................................... False
12403
+ log_throughput .................................. False
12404
+ log_timers_to_tensorboard ....................... False
12405
+ log_validation_ppl_to_tensorboard ............... False
12406
+ log_world_size_to_tensorboard ................... False
12407
+ logging_level ................................... 0
12408
+ loss_scale ...................................... None
12409
+ loss_scale_window ............................... 1000
12410
+ lr .............................................. 0.0005
12411
+ lr_decay_iters .................................. 150000
12412
+ lr_decay_samples ................................ None
12413
+ lr_decay_style .................................. cosine
12414
+ lr_warmup_fraction .............................. None
12415
+ lr_warmup_init .................................. 0.0
12416
+ lr_warmup_iters ................................. 2
12417
+ lr_warmup_samples ............................... 0
12418
+ lr_wsd_decay_iters .............................. None
12419
+ lr_wsd_decay_samples ............................ None
12420
+ lr_wsd_decay_style .............................. exponential
12421
+ main_grads_dtype ................................ torch.float32
12422
+ main_params_dtype ............................... torch.float32
12423
+ make_vocab_size_divisible_by .................... 128
12424
+ mamba_head_dim .................................. 64
12425
+ mamba_num_groups ................................ 8
12426
+ mamba_num_heads ................................. None
12427
+ mamba_state_dim ................................. 128
12428
+ manual_gc ....................................... False
12429
+ manual_gc_eval .................................. True
12430
+ manual_gc_interval .............................. 0
12431
+ mask_factor ..................................... 1.0
12432
+ mask_prob ....................................... 0.15
12433
+ mask_type ....................................... random
12434
+ masked_softmax_fusion ........................... True
12435
+ max_position_embeddings ......................... 40960
12436
+ max_tokens_to_oom ............................... 12000
12437
+ memory_snapshot_path ............................ snapshot.pickle
12438
+ merge_file ...................................... merges.txt
12439
+ micro_batch_size ................................ 1
12440
+ microbatch_group_size_per_vp_stage .............. None
12441
+ mid_level_dataset_surplus ....................... 0.005
12442
+ min_loss_scale .................................. 1.0
12443
+ min_lr .......................................... 0.0
12444
+ mlp_chunks_for_prefill .......................... 1
12445
+ mmap_bin_files .................................. True
12446
+ mock_data ....................................... True
12447
+ moe_apply_probs_on_input ........................ False
12448
+ moe_aux_loss_coeff .............................. 0.0
12449
+ moe_enable_deepep ............................... False
12450
+ moe_expert_capacity_factor ...................... None
12451
+ moe_extended_tp ................................. False
12452
+ moe_ffn_hidden_size ............................. None
12453
+ moe_grouped_gemm ................................ False
12454
+ moe_input_jitter_eps ............................ None
12455
+ moe_layer_freq .................................. 1
12456
+ moe_layer_recompute ............................. False
12457
+ moe_pad_expert_input_to_capacity ................ False
12458
+ moe_per_layer_logging ........................... False
12459
+ moe_permute_fusion .............................. False
12460
+ moe_router_bias_update_rate ..................... 0.001
12461
+ moe_router_dtype ................................ None
12462
+ moe_router_enable_expert_bias ................... False
12463
+ moe_router_force_load_balancing ................. False
12464
+ moe_router_group_topk ........................... None
12465
+ moe_router_load_balancing_type .................. aux_loss
12466
+ moe_router_num_groups ........................... None
12467
+ moe_router_padding_for_fp8 ...................... False
12468
+ moe_router_pre_softmax .......................... False
12469
+ moe_router_score_function ....................... softmax
12470
+ moe_router_topk ................................. 2
12471
+ moe_router_topk_scaling_factor .................. None
12472
+ moe_shared_expert_intermediate_size ............. None
12473
+ moe_shared_expert_overlap ....................... False
12474
+ moe_token_dispatcher_type ....................... allgather
12475
+ moe_token_drop_policy ........................... probs
12476
+ moe_use_legacy_grouped_gemm ..................... False
12477
+ moe_use_upcycling ............................... False
12478
+ moe_z_loss_coeff ................................ None
12479
+ mrope_section ................................... None
12480
+ mscale .......................................... 1.0
12481
+ mscale_all_dim .................................. 1.0
12482
+ mtp_loss_scaling_factor ......................... 0.1
12483
+ mtp_num_layers .................................. None
12484
+ multi_latent_attention .......................... False
12485
+ nccl_all_reduce_for_prefill ..................... False
12486
+ nccl_communicator_config_path ................... None
12487
+ nccl_ub ......................................... False
12488
+ no_load_optim ................................... None
12489
+ no_load_rng ..................................... None
12490
+ no_persist_layer_norm ........................... False
12491
+ no_rope_freq .................................... None
12492
+ no_save_optim ................................... None
12493
+ no_save_rng ..................................... None
12494
+ non_persistent_ckpt_type ........................ None
12495
+ non_persistent_global_ckpt_dir .................. None
12496
+ non_persistent_local_ckpt_algo .................. fully_parallel
12497
+ non_persistent_local_ckpt_dir ................... None
12498
+ non_persistent_save_interval .................... None
12499
+ norm_epsilon .................................... 1e-05
12500
+ normalization ................................... LayerNorm
12501
+ num_attention_heads ............................. 64
12502
+ num_channels .................................... 3
12503
+ num_classes ..................................... 1000
12504
+ num_dataset_builder_threads ..................... 1
12505
+ num_distributed_optimizer_instances ............. 1
12506
+ num_experts ..................................... None
12507
+ num_layers ...................................... 2
12508
+ num_layers_at_end_in_bf16 ....................... 1
12509
+ num_layers_at_start_in_bf16 ..................... 1
12510
+ num_layers_per_virtual_pipeline_stage ........... None
12511
+ num_query_groups ................................ 16
12512
+ num_virtual_stages_per_pipeline_rank ............ None
12513
+ num_workers ..................................... 2
12514
+ object_storage_cache_path ....................... None
12515
+ one_logger_async ................................ False
12516
+ one_logger_project .............................. megatron-lm
12517
+ one_logger_run_name ............................. None
12518
+ onnx_safe ....................................... None
12519
+ openai_gelu ..................................... False
12520
+ optimizer ....................................... adam
12521
+ optimizer_cpu_offload ........................... False
12522
+ optimizer_offload_fraction ...................... 1.0
12523
+ output_bert_embeddings .......................... False
12524
+ overlap_cpu_optimizer_d2h_h2d ................... False
12525
+ overlap_grad_reduce ............................. False
12526
+ overlap_p2p_comm ................................ False
12527
+ overlap_p2p_comm_warmup_flush ................... False
12528
+ overlap_param_gather ............................ False
12529
+ overlap_param_gather_with_optimizer_step ........ False
12530
+ override_opt_param_scheduler .................... False
12531
+ params_dtype .................................... torch.float16
12532
+ patch_dim ....................................... 16
12533
+ per_split_data_args_path ........................ None
12534
+ perform_initialization .......................... True
12535
+ pin_cpu_grads ................................... True
12536
+ pin_cpu_params .................................. True
12537
+ pipeline_model_parallel_comm_backend ............ None
12538
+ pipeline_model_parallel_size .................... 1
12539
+ pipeline_model_parallel_split_rank .............. None
12540
+ position_embedding_type ......................... learned_absolute
12541
+ pretrained_checkpoint ........................... None
12542
+ profile ......................................... False
12543
+ profile_ranks ................................... [0]
12544
+ profile_step_end ................................ 12
12545
+ profile_step_start .............................. 10
12546
+ q_lora_rank ..................................... None
12547
+ qk_head_dim ..................................... 128
12548
+ qk_l2_norm ...................................... False
12549
+ qk_layernorm .................................... False
12550
+ qk_pos_emb_head_dim ............................. 64
12551
+ query_in_block_prob ............................. 0.1
12552
+ rampup_batch_size ............................... None
12553
+ rank ............................................ 0
12554
+ recompute_granularity ........................... None
12555
+ recompute_method ................................ None
12556
+ recompute_modules ............................... None
12557
+ recompute_num_layers ............................ None
12558
+ record_memory_history ........................... False
12559
+ relative_attention_max_distance ................. 128
12560
+ relative_attention_num_buckets .................. 32
12561
+ replication ..................................... False
12562
+ replication_factor .............................. 2
12563
+ replication_jump ................................ None
12564
+ rerun_mode ...................................... disabled
12565
+ reset_attention_mask ............................ False
12566
+ reset_position_ids .............................. False
12567
+ result_rejected_tracker_filename ................ None
12568
+ retriever_report_topk_accuracies ................ []
12569
+ retriever_score_scaling ......................... False
12570
+ retriever_seq_length ............................ 256
12571
+ retro_add_retriever ............................. False
12572
+ retro_attention_gate ............................ 1
12573
+ retro_cyclic_train_iters ........................ None
12574
+ retro_encoder_attention_dropout ................. 0.1
12575
+ retro_encoder_hidden_dropout .................... 0.1
12576
+ retro_encoder_layers ............................ 2
12577
+ retro_num_neighbors ............................. 2
12578
+ retro_num_retrieved_chunks ...................... 2
12579
+ retro_project_dir ............................... None
12580
+ retro_verify_neighbor_count ..................... True
12581
+ rope_scaling_factor ............................. 8.0
12582
+ rotary_base ..................................... 10000
12583
+ rotary_interleaved .............................. False
12584
+ rotary_percent .................................. 1.0
12585
+ rotary_scaling_factor ........................... 1.0
12586
+ rotary_seq_len_interpolation_factor ............. None
12587
+ run_workload_inspector_server ................... False
12588
+ sample_rate ..................................... 1.0
12589
+ save ............................................ gpt-checkpoint
12590
+ save_interval ................................... 16
12591
+ scatter_gather_tensors_in_pipeline .............. True
12592
+ seed ............................................ 1234
12593
+ seq_length ...................................... 40960
12594
+ sequence_parallel ............................... False
12595
+ sgd_momentum .................................... 0.9
12596
+ short_seq_prob .................................. 0.1
12597
+ skip_train ...................................... False
12598
+ skipped_train_samples ........................... 0
12599
+ spec ............................................ None
12600
+ split ........................................... None
12601
+ squared_relu .................................... False
12602
+ start_weight_decay .............................. 0.1
12603
+ straggler_ctrlr_port ............................ 65535
12604
+ straggler_minmax_count .......................... 1
12605
+ suggested_communication_unit_size ............... None
12606
+ swiglu .......................................... False
12607
+ swin_backbone_type .............................. tiny
12608
+ symmetric_ar_type ............................... None
12609
+ te_rng_tracker .................................. False
12610
+ tensor_model_parallel_size ...................... 4
12611
+ tensorboard_dir ................................. tensorboard-logs/
12612
+ tensorboard_log_interval ........................ 1
12613
+ tensorboard_queue_size .......................... 1000
12614
+ test_data_path .................................. None
12615
+ test_mode ....................................... False
12616
+ tiktoken_num_special_tokens ..................... 1000
12617
+ tiktoken_pattern ................................ None
12618
+ tiktoken_special_tokens ......................... None
12619
+ timing_log_level ................................ 0
12620
+ timing_log_option ............................... minmax
12621
+ titles_data_path ................................ None
12622
+ tokenizer_model ................................. None
12623
+ tokenizer_type .................................. GPT2BPETokenizer
12624
+ torch_fsdp2_reshard_after_forward ............... True
12625
+ tp_comm_bootstrap_backend ....................... nccl
12626
+ tp_comm_bulk_dgrad .............................. True
12627
+ tp_comm_bulk_wgrad .............................. True
12628
+ tp_comm_overlap ................................. False
12629
+ tp_comm_overlap_ag .............................. True
12630
+ tp_comm_overlap_cfg ............................. None
12631
+ tp_comm_overlap_rs .............................. True
12632
+ tp_comm_overlap_rs_dgrad ........................ False
12633
+ tp_comm_split_ag ................................ True
12634
+ tp_comm_split_rs ................................ True
12635
+ train_data_path ................................. None
12636
+ train_iters ..................................... 10
12637
+ train_samples ................................... None
12638
+ train_sync_interval ............................. None
12639
+ transformer_impl ................................ transformer_engine
12640
+ transformer_pipeline_model_parallel_size ........ 1
12641
+ untie_embeddings_and_output_weights ............. False
12642
+ use_checkpoint_args ............................. False
12643
+ use_checkpoint_opt_param_scheduler .............. False
12644
+ use_cpu_initialization .......................... None
12645
+ use_custom_fsdp ................................. False
12646
+ use_dist_ckpt ................................... True
12647
+ use_dist_ckpt_deprecated ........................ False
12648
+ use_distributed_optimizer ....................... False
12649
+ use_flash_attn .................................. False
12650
+ use_legacy_models ............................... False
12651
+ use_mp_args_from_checkpoint_args ................ False
12652
+ use_one_sent_docs ............................... False
12653
+ use_persistent_ckpt_worker ...................... False
12654
+ use_precision_aware_optimizer ................... False
12655
+ use_pytorch_profiler ............................ False
12656
+ use_ring_exchange_p2p ........................... False
12657
+ use_rope_scaling ................................ False
12658
+ use_rotary_position_embeddings .................. False
12659
+ use_sharp ....................................... False
12660
+ use_tokenizer_model_from_checkpoint_args ........ True
12661
+ use_torch_fsdp2 ................................. False
12662
+ use_torch_optimizer_for_cpu_offload ............. False
12663
+ use_tp_pp_dp_mapping ............................ False
12664
+ v_head_dim ...................................... 128
12665
+ valid_data_path ................................. None
12666
+ variable_seq_lengths ............................ False
12667
+ virtual_pipeline_model_parallel_size ............ None
12668
+ vision_backbone_type ............................ vit
12669
+ vision_pretraining .............................. False
12670
+ vision_pretraining_type ......................... classify
12671
+ vocab_extra_ids ................................. 0
12672
+ vocab_file ...................................... vocab.json
12673
+ vocab_size ...................................... None
12674
+ wandb_exp_name ..................................
12675
+ wandb_project ...................................
12676
+ wandb_save_dir ..................................
12677
+ weight_decay .................................... 0.1
12678
+ weight_decay_incr_style ......................... constant
12679
+ wgrad_deferral_limit ............................ 0
12680
+ world_size ...................................... 16
12681
+ yaml_cfg ........................................ None
12682
+ -------------------- end of arguments ---------------------
12683
+ INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1
12684
+ > building GPT2BPETokenizer tokenizer ...
12685
+ INFO:megatron.training.initialize:Setting logging level to 0
12686
+ INFO:megatron.training.initialize:Setting logging level to 0
12687
+ INFO:megatron.training.initialize:Setting logging level to 0
12688
+ > padded vocab (size: 50257) with 431 dummy tokens (new size: 50688)
12689
+ INFO:megatron.training.initialize:Setting logging level to 0
12690
+ WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED
12691
+ > initializing torch distributed ...
12692
+ INFO:megatron.training.initialize:Setting logging level to 0
12693
+ INFO:megatron.training.initialize:Setting logging level to 0
12694
+ INFO:megatron.training.initialize:Setting logging level to 0
12695
+ INFO:megatron.training.initialize:Setting logging level to 0
12696
+ > initialized tensor model parallel with size 4
12697
+ > initialized pipeline model parallel with size 1
12698
+ > setting random seeds to 1234 ...
12699
+ > compiling dataset index builder ...
12700
+ make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
12701
+ make: Nothing to be done for 'default'.
12702
+ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
12703
+ >>> done with dataset index builder. Compilation time: 0.045 seconds
12704
+ WARNING: constraints for invoking optimized fused softmax kernel are not met. We default back to unfused kernel invocations.
12705
+ > compiling and loading fused kernels ...
12706
+ >>> done with compiling and loading fused kernels. Compilation time: 2.421 seconds
12707
+ time to initialize megatron (seconds): 8.474
12708
+ [after megatron is initialized] datetime: 2025-06-21 21:34:54
12709
+ building GPT model ...
12710
+ >>> embedding
12711
+ >>> decoder
12712
+ >>> output_layer
12713
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 307825664
12714
+ >>> embedding
12715
+ >>> decoder
12716
+ >>> output_layer
12717
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 307825664
12718
+ >>> embedding
12719
+ >>> decoder
12720
+ >>> output_layer
12721
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 307825664
12722
+ >>> embedding
12723
+ >>> decoder
12724
+ >>> output_layer
12725
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 307825664
12726
+ >>> embedding
12727
+ >>> decoder
12728
+ >>> output_layer
12729
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 307825664
12730
+ >>> embedding
12731
+ >>> decoder
12732
+ >>> output_layer
12733
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 307825664
12734
+ >>> embedding
12735
+ >>> decoder
12736
+ >>> output_layer
12737
+ >>> embedding
12738
+ >>> decoder
12739
+ >>> output_layer
12740
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 307825664
12741
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 307825664
12742
+ >>> embedding
12743
+ >>> decoder
12744
+ >>> output_layer
12745
+ >>> embedding
12746
+ >>> decoder
12747
+ >>> output_layer
12748
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 307825664
12749
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 307825664
12750
+ >>> embedding
12751
+ >>> decoder
12752
+ >>> output_layer
12753
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 307825664
12754
+ >>> embedding
12755
+ >>> decoder
12756
+ >>> output_layer
12757
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 307825664
12758
+ >>> embedding
12759
+ >>> decoder
12760
+ >>> output_layer
12761
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 307825664
12762
+ >>> embedding
12763
+ >>> decoder
12764
+ >>> output_layer
12765
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 307825664
12766
+ >>> embedding
12767
+ >>> decoder
12768
+ >>> output_layer
12769
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 307825664
12770
+ INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False)
12771
+ INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1
12772
+ Params for bucket 1 (307825664 elements, 307825664 padded size):
12773
+ module.decoder.layers.1.mlp.linear_fc1.weight
12774
+ module.decoder.layers.0.mlp.linear_fc1.weight
12775
+ module.decoder.layers.1.mlp.linear_fc2.bias
12776
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight
12777
+ module.decoder.layers.0.self_attention.linear_qkv.weight
12778
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias
12779
+ module.decoder.layers.0.mlp.linear_fc1.bias
12780
+ module.decoder.layers.1.mlp.linear_fc1.bias
12781
+ module.decoder.layers.0.mlp.linear_fc2.weight
12782
+ module.decoder.layers.0.self_attention.linear_proj.weight
12783
+ module.decoder.layers.1.self_attention.linear_qkv.weight
12784
+ module.decoder.layers.1.self_attention.linear_proj.weight
12785
+ module.decoder.layers.0.self_attention.linear_qkv.bias
12786
+ module.decoder.layers.0.self_attention.linear_proj.bias
12787
+ module.decoder.final_layernorm.bias
12788
+ module.decoder.layers.1.mlp.linear_fc2.weight
12789
+ module.decoder.layers.1.self_attention.linear_proj.bias
12790
+ module.embedding.position_embeddings.weight
12791
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias
12792
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias
12793
+ module.decoder.final_layernorm.weight
12794
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight
12795
+ module.decoder.layers.1.self_attention.linear_qkv.bias
12796
+ module.decoder.layers.0.mlp.linear_fc2.bias
12797
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight
12798
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias
12799
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight
12800
+ module.embedding.word_embeddings.weight
12801
+ INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x148555f962a0>, config_logger_dir='')
12802
+ INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
12803
+ >>> embedding
12804
+ >>> decoder
12805
+ >>> output_layer
12806
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 307825664
12807
+ WARNING: could not find the metadata file gpt-checkpoint/latest_checkpointed_iteration.txt
12808
+ will not load any checkpoints and will start from random
12809
+ (min, max) time across ranks (ms):
12810
+ load-checkpoint ................................: (2.68, 3.84)
12811
+ [after model, optimizer, and learning rate scheduler are built] datetime: 2025-06-21 21:34:57
12812
+ > building train, validation, and test datasets ...
12813
+ > datasets target sizes (minimum size):
12814
+ train: 10
12815
+ validation: 1
12816
+ test: 1
12817
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let mock = True, as both blend and blend_per_split are None
12818
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split = 1,1,1, an arbitrarily even split, as mock is True
12819
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split_matrix = [(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)]
12820
+ > building train, validation, and test datasets for GPT ...
12821
+ INFO:megatron.core.datasets.blended_megatron_dataset_builder:Building MockGPTDataset splits with sizes=(10, 1, 1) and config=GPTDatasetConfig(random_seed=1234, sequence_length=40960, blend=None, blend_per_split=None, split='1,1,1', split_matrix=[(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)], num_dataset_builder_threads=1, path_to_cache=None, mmap_bin_files=True, mock=True, tokenizer=<megatron.training.tokenizer.tokenizer._GPT2BPETokenizer object at 0x148556418470>, mid_level_dataset_surplus=0.005, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, create_attention_mask=True, drop_last_partial_validation_sequence=True, add_extra_token_to_sequence=True, object_storage_cache_path=None)
12822
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset train indices
12823
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
12824
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
12825
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.005231 seconds
12826
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 1664
12827
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
12828
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset valid indices
12829
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
12830
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
12831
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001617 seconds
12832
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 1664
12833
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
12834
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset test indices
12835
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
12836
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
12837
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001457 seconds
12838
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 1667
12839
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
12840
+ > finished creating GPT datasets ...
12841
+ [after dataloaders are built] datetime: 2025-06-21 21:34:57
12842
+ done with setup ...
12843
+ (min, max) time across ranks (ms):
12844
+ model-and-optimizer-setup ......................: (2294.08, 2335.22)
12845
+ train/valid/test-data-iterators-setup ..........: (18.17, 143.69)
12846
+ training ...
12847
+ Setting rerun_state_machine.current_iteration to 0...
12848
+ [before the start of training step] datetime: 2025-06-21 21:34:57
attnserver.run_attnserver.slurm.sh.343222.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343222.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343223.err.log CHANGED
@@ -610,3 +610,195 @@ W0621 21:33:06.777000 2474606 site-packages/torch/distributed/run.py:766] ******
610
  warnings.warn(
611
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
612
  warnings.warn(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610
  warnings.warn(
611
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
612
  warnings.warn(
613
+ [rank0]: Traceback (most recent call last):
614
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
615
+ [rank0]: pretrain(
616
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
617
+ [rank0]: save_checkpoint(
618
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
619
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
620
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
621
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 386, in save
622
+ [rank0]: common_strategy.save_common(state_dict, checkpoint_dir)
623
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/common.py", line 48, in save_common
624
+ [rank0]: torch.save(common_state_dict, path)
625
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 964, in save
626
+ [rank0]: with _open_zipfile_writer(f) as opened_zipfile:
627
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^
628
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 828, in _open_zipfile_writer
629
+ [rank0]: return container(name_or_buffer)
630
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^
631
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 792, in __init__
632
+ [rank0]: torch._C.PyTorchFileWriter(
633
+ [rank0]: RuntimeError: Parent directory gpt-checkpoint/iter_0000010 does not exist.
634
+ [rank0]:[W621 21:34:36.978710634 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
635
+ W0621 21:34:41.705000 2518285 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2518357 closing signal SIGTERM
636
+ W0621 21:34:41.708000 2518285 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2518358 closing signal SIGTERM
637
+ W0621 21:34:41.711000 2518285 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2518359 closing signal SIGTERM
638
+ W0621 21:34:41.714000 2518285 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2518360 closing signal SIGTERM
639
+ W0621 21:34:41.718000 2518285 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2518361 closing signal SIGTERM
640
+ W0621 21:34:41.721000 2518285 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2518362 closing signal SIGTERM
641
+ W0621 21:34:41.740000 2518285 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2518363 closing signal SIGTERM
642
+ E0621 21:34:43.727000 2518285 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 2518356) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
643
+ Traceback (most recent call last):
644
+ File "<frozen runpy>", line 198, in _run_module_as_main
645
+ File "<frozen runpy>", line 88, in _run_code
646
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
647
+ main()
648
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
649
+ return arg(*args, **kwargs)
650
+ ^^^^^^^^^^^^^^^^^^^^
651
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
652
+ launch(args)
653
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
654
+ run(args)
655
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
656
+ elastic_launch(
657
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
658
+ return launch_agent(self._config, self._entrypoint, list(args))
659
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
660
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
661
+ raise ChildFailedError(
662
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
663
+ ============================================================
664
+ ./pretrain_gpt_profile.py FAILED
665
+ ------------------------------------------------------------
666
+ Failures:
667
+ <NO_OTHER_FAILURES>
668
+ ------------------------------------------------------------
669
+ Root Cause (first observed failure):
670
+ [0]:
671
+ time : 2025-06-21_21:34:41
672
+ host : fs-mbz-gpu-703
673
+ rank : 0 (local_rank: 0)
674
+ exitcode : 1 (pid: 2518356)
675
+ error_file: <N/A>
676
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
677
+ ============================================================
678
+ + set +x
679
+ W0621 21:34:44.078000 2474606 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2474676 closing signal SIGTERM
680
+ W0621 21:34:44.082000 2474606 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2474677 closing signal SIGTERM
681
+ W0621 21:34:44.084000 2474606 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2474678 closing signal SIGTERM
682
+ W0621 21:34:44.086000 2474606 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2474679 closing signal SIGTERM
683
+ W0621 21:34:44.089000 2474606 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2474680 closing signal SIGTERM
684
+ W0621 21:34:44.108000 2474606 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2474681 closing signal SIGTERM
685
+ W0621 21:34:44.132000 2474606 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2474682 closing signal SIGTERM
686
+ W0621 21:34:44.137000 2474606 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2474683 closing signal SIGTERM
687
+ [W621 21:34:46.046129759 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-786]:35214, remote=[fs-mbz-gpu-703]:29500): Broken pipe
688
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
689
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1466431785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
690
+ frame #1: <unknown function> + 0x5ba8afe (0x14662c45aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
691
+ frame #2: <unknown function> + 0x5baa358 (0x14662c45c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
692
+ frame #3: <unknown function> + 0x5babb3e (0x14662c45db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
693
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14662c457ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
694
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14662c457ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
695
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14662c458f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
696
+ frame #7: <unknown function> + 0xc0f526 (0x14663b78b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
697
+ frame #8: <unknown function> + 0x37f17d (0x14663aefb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
698
+ <omitting python frames>
699
+ frame #26: <unknown function> + 0x29d90 (0x1466444cbd90 in /lib/x86_64-linux-gnu/libc.so.6)
700
+ frame #27: __libc_start_main + 0x80 (0x1466444cbe40 in /lib/x86_64-linux-gnu/libc.so.6)
701
+
702
+ W0621 21:34:46.427000 2474606 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-786_2474606_0' has failed to shutdown the rendezvous '343223' due to an error of type RendezvousConnectionError.
703
+ [W621 21:34:46.060885070 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-786]:35214, remote=[fs-mbz-gpu-703]:29500): Broken pipe
704
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
705
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x1466431785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
706
+ frame #1: <unknown function> + 0x5ba8afe (0x14662c45aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
707
+ frame #2: <unknown function> + 0x5baa358 (0x14662c45c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
708
+ frame #3: <unknown function> + 0x5babb3e (0x14662c45db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
709
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14662c457ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
710
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14662c457ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
711
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14662c458f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
712
+ frame #7: <unknown function> + 0xc0f526 (0x14663b78b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
713
+ frame #8: <unknown function> + 0x37f17d (0x14663aefb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
714
+ <omitting python frames>
715
+ frame #26: <unknown function> + 0x29d90 (0x1466444cbd90 in /lib/x86_64-linux-gnu/libc.so.6)
716
+ frame #27: __libc_start_main + 0x80 (0x1466444cbe40 in /lib/x86_64-linux-gnu/libc.so.6)
717
+
718
+ W0621 21:34:46.438000 2474606 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-786_2474606_0' has failed to shutdown the rendezvous '343223' due to an error of type RendezvousConnectionError.
719
+ Traceback (most recent call last):
720
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 117, in _call_store
721
+ return getattr(self._store, store_op)(*args, **kwargs)
722
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
723
+ torch.distributed.DistNetworkError: failed to recv, got 0 bytes
724
+
725
+ The above exception was the direct cause of the following exception:
726
+
727
+ Traceback (most recent call last):
728
+ File "<frozen runpy>", line 198, in _run_module_as_main
729
+ File "<frozen runpy>", line 88, in _run_code
730
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
731
+ main()
732
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
733
+ return arg(*args, **kwargs)
734
+ ^^^^^^^^^^^^^^^^^^^^
735
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
736
+ launch(args)
737
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
738
+ run(args)
739
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
740
+ elastic_launch(
741
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
742
+ return launch_agent(self._config, self._entrypoint, list(args))
743
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
744
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 261, in launch_agent
745
+ result = agent.run()
746
+ ^^^^^^^^^^^
747
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/metrics/api.py", line 138, in wrapper
748
+ result = f(*args, **kwargs)
749
+ ^^^^^^^^^^^^^^^^^^
750
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 711, in run
751
+ result = self._invoke_run(role)
752
+ ^^^^^^^^^^^^^^^^^^^^^^
753
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 906, in _invoke_run
754
+ num_nodes_waiting = rdzv_handler.num_nodes_waiting()
755
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
756
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1263, in num_nodes_waiting
757
+ self._state_holder.sync()
758
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 437, in sync
759
+ get_response = self._backend.get_state()
760
+ ^^^^^^^^^^^^^^^^^^^^^^^^^
761
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 75, in get_state
762
+ base64_state: bytes = self._call_store("get", self._key)
763
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
764
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 119, in _call_store
765
+ raise RendezvousConnectionError(
766
+ torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
767
+ + set +x
768
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
769
+ + export PROF_CTX_LENGTH=4096
770
+ + PROF_CTX_LENGTH=4096
771
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L4096*tp4.cp4.bs16.json'
772
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L4096*tp4.cp4.bs16.json' ']'
773
+ + echo 'Running ctx_length=4096, TP_SIZE=4, CP_SIZE=4, BATCH_SIZE=16'
774
+ + srun bash ./attnserver.sh
775
+ + which python3
776
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 1 --rdzv_id 343223 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-703:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 4096 --max-position-embeddings 4096 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
777
+ + which python3
778
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 0 --rdzv_id 343223 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-703:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 4096 --max-position-embeddings 4096 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
779
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
780
+ and will be removed in future. Use torchrun.
781
+ Note that --use-env is set by default in torchrun.
782
+ If your script expects `--local-rank` argument to be set, please
783
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
784
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
785
+ further instructions
786
+
787
+ main()
788
+ W0621 21:34:49.559000 2477421 site-packages/torch/distributed/run.py:766]
789
+ W0621 21:34:49.559000 2477421 site-packages/torch/distributed/run.py:766] *****************************************
790
+ W0621 21:34:49.559000 2477421 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
791
+ W0621 21:34:49.559000 2477421 site-packages/torch/distributed/run.py:766] *****************************************
792
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
793
+ and will be removed in future. Use torchrun.
794
+ Note that --use-env is set by default in torchrun.
795
+ If your script expects `--local-rank` argument to be set, please
796
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
797
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
798
+ further instructions
799
+
800
+ main()
801
+ W0621 21:34:49.719000 2521169 site-packages/torch/distributed/run.py:766]
802
+ W0621 21:34:49.719000 2521169 site-packages/torch/distributed/run.py:766] *****************************************
803
+ W0621 21:34:49.719000 2521169 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
804
+ W0621 21:34:49.719000 2521169 site-packages/torch/distributed/run.py:766] *****************************************
attnserver.run_attnserver.slurm.sh.343223.out.log CHANGED
@@ -3248,3 +3248,1556 @@ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3248
  batch tensor after cp: position_ids torch.Size([16, 8192])
3249
  Start exporting trace 0
3250
  Done exporting trace 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3248
  batch tensor after cp: position_ids torch.Size([16, 8192])
3249
  Start exporting trace 0
3250
  Done exporting trace 0
3251
+ Number of parameters in transformer block in billions: 0.35
3252
+ Number of parameters in embedding layers in billions: 0.21
3253
+ Total number of parameters in billions: 0.56
3254
+ Number of parameters in most loaded shard in billions: 0.1400
3255
+ Theoretical memory footprints: weight and optimizer=2403.18 MB
3256
+ [Rank 1] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 54076.0 | max reserved: 54076.0
3257
+ [2025-06-21 21:33:54] iteration 1/ 10 | consumed samples: 1 | elapsed time per iteration (ms): 12990.3 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 4294967296.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
3258
+ [Rank 0] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 54076.0 | max reserved: 54076.0
3259
+ [Rank 15] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 54500.0 | max reserved: 54500.0
3260
+ [Rank 12] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 53840.0 | max reserved: 53840.0
3261
+ [Rank 14] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 54500.0 | max reserved: 54500.0[Rank 9] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 53348.0 | max reserved: 53348.0
3262
+ [Rank 13] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 53968.0 | max reserved: 53968.0
3263
+
3264
+ [Rank 6] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 53200.0 | max reserved: 53200.0
3265
+ [Rank 10] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 53348.0 | max reserved: 53348.0
3266
+ [Rank 11] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 53348.0 | max reserved: 53348.0
3267
+ [Rank 8] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 53348.0 | max reserved: 53348.0
3268
+ [Rank 3] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 53052.0 | max reserved: 53052.0
3269
+ [Rank 7] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 53200.0 | max reserved: 53200.0[Rank 5] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 54224.0 | max reserved: 54224.0
3270
+
3271
+ [Rank 2] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 53308.0 | max reserved: 53308.0
3272
+ [Rank 4] (after 1 iterations) memory (MB) | allocated: 22346.16064453125 | max allocated: 49402.65283203125 | reserved: 54224.0 | max reserved: 54224.0
3273
+ batch tensor: tokens torch.Size([16, 32768])
3274
+ batch tensor: labels torch.Size([16, 32768])
3275
+ batch tensor: loss_mask torch.Size([16, 32768])
3276
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3277
+ batch tensor: position_ids torch.Size([16, 32768])
3278
+ batch tensor after cp: tokens torch.Size([16, 8192])
3279
+ batch tensor after cp: labels torch.Size([16, 8192])
3280
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3281
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3282
+ batch tensor: tokens torch.Size([16, 32768])
3283
+ batch tensor: labels torch.Size([16, 32768])
3284
+ batch tensor: loss_mask torch.Size([16, 32768])
3285
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3286
+ batch tensor: position_ids torch.Size([16, 32768])
3287
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3288
+ batch tensor: tokens torch.Size([16, 32768])
3289
+ batch tensor: labels torch.Size([16, 32768])
3290
+ batch tensor: loss_mask torch.Size([16, 32768])
3291
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3292
+ batch tensor: position_ids torch.Size([16, 32768])
3293
+ batch tensor: tokens torch.Size([16, 32768])
3294
+ batch tensor: labels torch.Size([16, 32768])
3295
+ batch tensor after cp: tokens torch.Size([16, 8192])
3296
+ batch tensor after cp: labels torch.Size([16, 8192])
3297
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3298
+ batch tensor: loss_mask torch.Size([16, 32768])
3299
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3300
+ batch tensor: position_ids torch.Size([16, 32768])
3301
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3302
+ batch tensor after cp: tokens torch.Size([16, 8192])
3303
+ batch tensor after cp: labels torch.Size([16, 8192])
3304
+ batch tensor after cp: position_idsbatch tensor after cp: torch.Size([16, 8192])tokens
3305
+ torch.Size([16, 8192])
3306
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3307
+ batch tensor after cp: labels torch.Size([16, 8192])
3308
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3309
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3310
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3311
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3312
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3313
+ batch tensor: tokens torch.Size([16, 32768])
3314
+ batch tensor: tokens torch.Size([16, 32768])
3315
+ batch tensor: labels torch.Size([16, 32768])
3316
+ batch tensor: loss_mask torch.Size([16, 32768])
3317
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3318
+ batch tensor: position_ids torch.Size([16, 32768])
3319
+ batch tensor: labels torch.Size([16, 32768])
3320
+ batch tensor: loss_mask torch.Size([16, 32768])
3321
+ batch tensor: tokens torch.Size([16, 32768])
3322
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3323
+ batch tensor: labels torch.Size([16, 32768])
3324
+ batch tensor: loss_mask torch.Size([16, 32768])
3325
+ batch tensor: position_ids torch.Size([16, 32768])
3326
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3327
+ batch tensor: position_ids torch.Size([16, 32768])
3328
+ batch tensor after cp: tokens torch.Size([16, 8192])
3329
+ batch tensor after cp: tokens torch.Size([16, 8192])
3330
+ batch tensor after cp: labels torch.Size([16, 8192])
3331
+ batch tensor after cp: labels torch.Size([16, 8192])
3332
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3333
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3334
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3335
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3336
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3337
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3338
+ batch tensor after cp: tokens torch.Size([16, 8192])
3339
+ batch tensor after cp: labels torch.Size([16, 8192])
3340
+ batch tensor: tokens torch.Size([16, 32768])
3341
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3342
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3343
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3344
+ batch tensor: labels torch.Size([16, 32768])
3345
+ batch tensor: tokens torch.Size([16, 32768])
3346
+ batch tensor: loss_mask torch.Size([16, 32768])
3347
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3348
+ batch tensor: labels torch.Size([16, 32768])
3349
+ batch tensor: loss_mask torch.Size([16, 32768])
3350
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3351
+ batch tensor: position_ids torch.Size([16, 32768])
3352
+ batch tensor: position_ids torch.Size([16, 32768])
3353
+ batch tensor after cp: tokens torch.Size([16, 8192])
3354
+ batch tensor after cp: tokens torch.Size([16, 8192])
3355
+ batch tensor after cp: labels torch.Size([16, 8192])
3356
+ batch tensor after cp: labels torch.Size([16, 8192])
3357
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3358
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3359
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3360
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3361
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3362
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3363
+ batch tensor: tokens torch.Size([16, 32768])
3364
+ batch tensor: tokens torch.Size([16, 32768])
3365
+ batch tensor: labels torch.Size([16, 32768])
3366
+ batch tensor: labels torch.Size([16, 32768])
3367
+ batch tensor: loss_mask torch.Size([16, 32768])
3368
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3369
+ batch tensor: position_ids torch.Size([16, 32768])
3370
+ batch tensor: loss_mask torch.Size([16, 32768])
3371
+ batch tensor after cp: tokens torch.Size([16, 8192])
3372
+ batch tensor after cp: labels torch.Size([16, 8192])
3373
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3374
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3375
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3376
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3377
+ batch tensor: position_ids torch.Size([16, 32768])
3378
+ batch tensor: tokens torch.Size([16, 32768])
3379
+ batch tensor after cp: tokens torch.Size([16, 8192])
3380
+ batch tensor after cp: labels torch.Size([16, 8192])
3381
+ batch tensor: labels torch.Size([16, 32768])
3382
+ batch tensor: loss_mask torch.Size([16, 32768])
3383
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3384
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3385
+ batch tensor: position_ids torch.Size([16, 32768])
3386
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3387
+ batch tensor after cp: tokens torch.Size([16, 8192])
3388
+ batch tensor after cp: labels torch.Size([16, 8192])
3389
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3390
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3391
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3392
+ batch tensor: tokens torch.Size([16, 32768])
3393
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3394
+ batch tensor: labels torch.Size([16, 32768])
3395
+ batch tensor: tokens torch.Size([16, 32768])
3396
+ batch tensor: loss_mask torch.Size([16, 32768])
3397
+ batch tensor: labels torch.Size([16, 32768])
3398
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3399
+ batch tensor: loss_mask torch.Size([16, 32768])
3400
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3401
+ batch tensor: position_ids torch.Size([16, 32768])
3402
+ batch tensor: position_ids torch.Size([16, 32768])
3403
+ batch tensor after cp: tokens torch.Size([16, 8192])
3404
+ batch tensor after cp: labels torch.Size([16, 8192])
3405
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3406
+ batch tensor after cp: tokens torch.Size([16, 8192])
3407
+ batch tensor after cp: labels torch.Size([16, 8192])
3408
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3409
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3410
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3411
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3412
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3413
+ batch tensor: tokens torch.Size([16, 32768])
3414
+ batch tensor: labels torch.Size([16, 32768])
3415
+ batch tensor: loss_mask torch.Size([16, 32768])
3416
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3417
+ batch tensor: position_ids torch.Size([16, 32768])
3418
+ batch tensor: tokens torch.Size([16, 32768])
3419
+ batch tensor: labels torch.Size([16, 32768])
3420
+ batch tensor: loss_mask torch.Size([16, 32768])
3421
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3422
+ batch tensor: position_ids torch.Size([16, 32768])
3423
+ batch tensor after cp: tokens torch.Size([16, 8192])
3424
+ batch tensor after cp: labels torch.Size([16, 8192])
3425
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3426
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3427
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3428
+ batch tensor after cp: tokens torch.Size([16, 8192])
3429
+ batch tensor after cp: labels torch.Size([16, 8192])
3430
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3431
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3432
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3433
+ Start exporting trace 1
3434
+ Done exporting trace 1
3435
+ [2025-06-21 21:33:55] iteration 2/ 10 | consumed samples: 2 | elapsed time per iteration (ms): 961.8 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 2147483648.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
3436
+ batch tensor: tokens torch.Size([16, 32768])
3437
+ batch tensor: labels torch.Size([16, 32768])
3438
+ batch tensor: loss_mask torch.Size([16, 32768])
3439
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3440
+ batch tensor: position_ids torch.Size([16, 32768])
3441
+ batch tensor after cp: tokens torch.Size([16, 8192])
3442
+ batch tensor after cp: labels torch.Size([16, 8192])
3443
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3444
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3445
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3446
+ batch tensor: tokens torch.Size([16, 32768])
3447
+ batch tensor: labels torch.Size([16, 32768])
3448
+ batch tensor: loss_mask torch.Size([16, 32768])
3449
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3450
+ batch tensor: position_ids torch.Size([16, 32768])
3451
+ batch tensor after cp: tokens torch.Size([16, 8192])
3452
+ batch tensor after cp: labels torch.Size([16, 8192])
3453
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3454
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3455
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3456
+ batch tensor: tokens torch.Size([16, 32768])
3457
+ batch tensor: labels torch.Size([16, 32768])
3458
+ batch tensor: loss_mask torch.Size([16, 32768])
3459
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3460
+ batch tensor: position_ids torch.Size([16, 32768])
3461
+ batch tensor after cp: tokens torch.Size([16, 8192])
3462
+ batch tensor: tokens torch.Size([16, 32768])
3463
+ batch tensor after cp: labels torch.Size([16, 8192])
3464
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3465
+ batch tensor: labels torch.Size([16, 32768])
3466
+ batch tensor: loss_mask torch.Size([16, 32768])
3467
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3468
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3469
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3470
+ batch tensor: position_ids torch.Size([16, 32768])
3471
+ batch tensor after cp: tokens torch.Size([16, 8192])
3472
+ batch tensor after cp: labels torch.Size([16, 8192])
3473
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3474
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3475
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3476
+ batch tensor: tokens torch.Size([16, 32768])
3477
+ batch tensor: labels torch.Size([16, 32768])
3478
+ batch tensor: loss_mask torch.Size([16, 32768])
3479
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3480
+ batch tensor: position_ids torch.Size([16, 32768])
3481
+ batch tensor after cp: tokens torch.Size([16, 8192])
3482
+ batch tensor after cp: labels torch.Size([16, 8192])
3483
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3484
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3485
+ batch tensor: tokens torch.Size([16, 32768])
3486
+ batch tensor: labels torch.Size([16, 32768])
3487
+ batch tensor: loss_mask torch.Size([16, 32768])
3488
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3489
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3490
+ batch tensor: position_ids torch.Size([16, 32768])
3491
+ batch tensor: tokens torch.Size([16, 32768])
3492
+ batch tensor after cp: tokens torch.Size([16, 8192])
3493
+ batch tensor after cp: labels torch.Size([16, 8192])
3494
+ batch tensor: labels torch.Size([16, 32768])
3495
+ batch tensor: loss_mask torch.Size([16, 32768])
3496
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3497
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3498
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3499
+ batch tensor: position_ids torch.Size([16, 32768])
3500
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3501
+ batch tensor after cp: tokens torch.Size([16, 8192])
3502
+ batch tensor after cp: labels torch.Size([16, 8192])
3503
+ batch tensor: tokens torch.Size([16, 32768])
3504
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3505
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3506
+ batch tensor: labels torch.Size([16, 32768])
3507
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3508
+ batch tensor: loss_mask torch.Size([16, 32768])
3509
+ batch tensor: tokens torch.Size([16, 32768])
3510
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3511
+ batch tensor: position_ids torch.Size([16, 32768])
3512
+ batch tensor: labels torch.Size([16, 32768])
3513
+ batch tensor: loss_mask torch.Size([16, 32768])
3514
+ batch tensor: tokens torch.Size([16, 32768])
3515
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3516
+ batch tensor: labels torch.Size([16, 32768])
3517
+ batch tensor: loss_mask torch.Size([16, 32768])
3518
+ batch tensor: position_ids torch.Size([16, 32768])
3519
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3520
+ batch tensor: tokens torch.Size([16, 32768])
3521
+ batch tensor: position_ids torch.Size([16, 32768])
3522
+ batch tensor: labels torch.Size([16, 32768])
3523
+ batch tensor after cp: tokens torch.Size([16, 8192])
3524
+ batch tensor after cp: labels torch.Size([16, 8192])
3525
+ batch tensor: loss_mask torch.Size([16, 32768])
3526
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3527
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3528
+ batch tensor: position_ids torch.Size([16, 32768])
3529
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3530
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3531
+ batch tensor after cp: tokens torch.Size([16, 8192])
3532
+ batch tensor after cp: labels torch.Size([16, 8192])
3533
+ batch tensor after cp: tokens torch.Size([16, 8192])
3534
+ batch tensor after cp: labels torch.Size([16, 8192])
3535
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3536
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3537
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3538
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3539
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3540
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3541
+ batch tensor after cp: tokens torch.Size([16, 8192])
3542
+ batch tensor after cp: labels torch.Size([16, 8192])
3543
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3544
+ batch tensor: tokens torch.Size([16, 32768])
3545
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3546
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3547
+ batch tensor: labels torch.Size([16, 32768])
3548
+ batch tensor: loss_mask torch.Size([16, 32768])
3549
+ batch tensor: tokens torch.Size([16, 32768])
3550
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3551
+ batch tensor: labels torch.Size([16, 32768])
3552
+ batch tensor: position_ids torch.Size([16, 32768])
3553
+ batch tensor: loss_mask torch.Size([16, 32768])
3554
+ batch tensor after cp: tokens torch.Size([16, 8192])
3555
+ batch tensor after cp: labels torch.Size([16, 8192])
3556
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3557
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3558
+ batch tensor: position_ids torch.Size([16, 32768])
3559
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3560
+ batch tensor after cp: tokens torch.Size([16, 8192])
3561
+ batch tensor after cp: labels torch.Size([16, 8192])
3562
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3563
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3564
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3565
+ batch tensor: tokens torch.Size([16, 32768])
3566
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3567
+ batch tensor: labels torch.Size([16, 32768])
3568
+ batch tensor: tokens torch.Size([16, 32768])
3569
+ batch tensor: loss_mask torch.Size([16, 32768])
3570
+ batch tensor: labels torch.Size([16, 32768])
3571
+ batch tensor: loss_mask torch.Size([16, 32768])
3572
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3573
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3574
+ batch tensor: position_ids torch.Size([16, 32768])
3575
+ batch tensor: position_ids torch.Size([16, 32768])
3576
+ batch tensor after cp: tokens torch.Size([16, 8192])
3577
+ batch tensor after cp: labels torch.Size([16, 8192])
3578
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3579
+ batch tensor after cp: tokens torch.Size([16, 8192])
3580
+ batch tensor after cp: labels torch.Size([16, 8192])
3581
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3582
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3583
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3584
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3585
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3586
+ batch tensor: tokens torch.Size([16, 32768])
3587
+ batch tensor: labels torch.Size([16, 32768])
3588
+ batch tensor: loss_mask torch.Size([16, 32768])
3589
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3590
+ batch tensor: position_ids torch.Size([16, 32768])
3591
+ batch tensor after cp: tokens torch.Size([16, 8192])
3592
+ batch tensor after cp: labels torch.Size([16, 8192])
3593
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3594
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3595
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3596
+ Start exporting trace 2
3597
+ Done exporting trace 2
3598
+ [2025-06-21 21:33:56] iteration 3/ 10 | consumed samples: 3 | elapsed time per iteration (ms): 932.0 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 1073741824.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
3599
+ batch tensor: tokens torch.Size([16, 32768])
3600
+ batch tensor: labels torch.Size([16, 32768])
3601
+ batch tensor: loss_mask torch.Size([16, 32768])
3602
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3603
+ batch tensor: position_ids torch.Size([16, 32768])
3604
+ batch tensor after cp: tokens torch.Size([16, 8192])
3605
+ batch tensor after cp: labels torch.Size([16, 8192])
3606
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3607
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3608
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3609
+ batch tensor: tokens torch.Size([16, 32768])
3610
+ batch tensor: labels torch.Size([16, 32768])
3611
+ batch tensor: loss_mask torch.Size([16, 32768])
3612
+ batch tensor: tokens torch.Size([16, 32768])
3613
+ batch tensor: labels torch.Size([16, 32768])
3614
+ batch tensor: loss_mask torch.Size([16, 32768])
3615
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3616
+ batch tensor: position_ids torch.Size([16, 32768])
3617
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3618
+ batch tensor: position_ids torch.Size([16, 32768])
3619
+ batch tensor after cp: tokens torch.Size([16, 8192])
3620
+ batch tensor after cp: labels torch.Size([16, 8192])
3621
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3622
+ batch tensor after cp: tokens torch.Size([16, 8192])
3623
+ batch tensor after cp: labels torch.Size([16, 8192])
3624
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3625
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3626
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3627
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3628
+ batch tensor: tokens torch.Size([16, 32768])
3629
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3630
+ batch tensor: labels torch.Size([16, 32768])
3631
+ batch tensor: loss_mask torch.Size([16, 32768])
3632
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3633
+ batch tensor: position_ids torch.Size([16, 32768])
3634
+ batch tensor after cp: tokens torch.Size([16, 8192])
3635
+ batch tensor after cp: labels torch.Size([16, 8192])
3636
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3637
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3638
+ batch tensor: tokens torch.Size([16, 32768])
3639
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3640
+ batch tensor: labels torch.Size([16, 32768])
3641
+ batch tensor: loss_mask torch.Size([16, 32768])
3642
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3643
+ batch tensor: position_ids torch.Size([16, 32768])
3644
+ batch tensor after cp: tokens torch.Size([16, 8192])
3645
+ batch tensor after cp: labels torch.Size([16, 8192])
3646
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3647
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3648
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3649
+ batch tensor: tokens torch.Size([16, 32768])
3650
+ batch tensor: labels torch.Size([16, 32768])
3651
+ batch tensor: tokens torch.Size([16, 32768])
3652
+ batch tensor: labels torch.Size([16, 32768])
3653
+ batch tensor: loss_mask torch.Size([16, 32768])
3654
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3655
+ batch tensor: position_ids torch.Size([16, 32768])
3656
+ batch tensor: loss_mask torch.Size([16, 32768])
3657
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3658
+ batch tensor after cp: tokens torch.Size([16, 8192])
3659
+ batch tensor after cp: labels torch.Size([16, 8192])
3660
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3661
+ batch tensor: position_ids torch.Size([16, 32768])
3662
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3663
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3664
+ batch tensor: tokens torch.Size([16, 32768])
3665
+ batch tensor: tokens torch.Size([16, 32768])
3666
+ batch tensor: labels torch.Size([16, 32768])
3667
+ batch tensor: labels torch.Size([16, 32768])
3668
+ batch tensor: loss_mask torch.Size([16, 32768])
3669
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3670
+ batch tensor: loss_mask torch.Size([16, 32768])
3671
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3672
+ batch tensor: position_ids torch.Size([16, 32768])
3673
+ batch tensor: position_ids torch.Size([16, 32768])
3674
+ batch tensor after cp: tokens torch.Size([16, 8192])
3675
+ batch tensor after cp: tokens torch.Size([16, 8192])
3676
+ batch tensor after cp: labels torch.Size([16, 8192])
3677
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3678
+ batch tensor after cp: labels torch.Size([16, 8192])
3679
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3680
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3681
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3682
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3683
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3684
+ batch tensor: tokens torch.Size([16, 32768])
3685
+ batch tensor after cp: tokens torch.Size([16, 8192])
3686
+ batch tensor after cp: labels torch.Size([16, 8192])
3687
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3688
+ batch tensor: labels torch.Size([16, 32768])
3689
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3690
+ batch tensor: loss_mask torch.Size([16, 32768])
3691
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3692
+ batch tensor: position_ids torch.Size([16, 32768])
3693
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3694
+ batch tensor after cp: tokens torch.Size([16, 8192])
3695
+ batch tensor after cp: labels torch.Size([16, 8192])
3696
+ batch tensor: tokens torch.Size([16, 32768])
3697
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3698
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3699
+ batch tensor: labels torch.Size([16, 32768])
3700
+ batch tensor: loss_mask torch.Size([16, 32768])
3701
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3702
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3703
+ batch tensor: tokens torch.Size([16, 32768])
3704
+ batch tensor: position_ids torch.Size([16, 32768])
3705
+ batch tensor: labels torch.Size([16, 32768])
3706
+ batch tensor: loss_mask torch.Size([16, 32768])
3707
+ batch tensor: tokens torch.Size([16, 32768])
3708
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3709
+ batch tensor: position_ids torch.Size([16, 32768])
3710
+ batch tensor: labels torch.Size([16, 32768])
3711
+ batch tensor after cp: tokens torch.Size([16, 8192])
3712
+ batch tensor after cp: labels torch.Size([16, 8192])
3713
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3714
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3715
+ batch tensor: loss_mask torch.Size([16, 32768])
3716
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3717
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3718
+ batch tensor: tokens torch.Size([16, 32768])
3719
+ batch tensor: position_ids torch.Size([16, 32768])
3720
+ batch tensor: labels torch.Size([16, 32768])
3721
+ batch tensor: tokens torch.Size([16, 32768])
3722
+ batch tensor: loss_mask torch.Size([16, 32768])
3723
+ batch tensor: labels torch.Size([16, 32768])
3724
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3725
+ batch tensor: position_ids torch.Size([16, 32768])
3726
+ batch tensor: loss_mask torch.Size([16, 32768])
3727
+ batch tensor after cp: tokens torch.Size([16, 8192])
3728
+ batch tensor after cp: labels torch.Size([16, 8192])
3729
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3730
+ batch tensor: position_ids torch.Size([16, 32768])
3731
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3732
+ batch tensor after cp: tokens torch.Size([16, 8192])
3733
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3734
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3735
+ batch tensor after cp: labels torch.Size([16, 8192])
3736
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3737
+ batch tensor: tokens torch.Size([16, 32768])
3738
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3739
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3740
+ batch tensor: labels torch.Size([16, 32768])
3741
+ batch tensor after cp: tokens torch.Size([16, 8192])
3742
+ batch tensor: loss_mask torch.Size([16, 32768])
3743
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3744
+ batch tensor after cp: labels torch.Size([16, 8192])
3745
+ batch tensor: position_ids torch.Size([16, 32768])
3746
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3747
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3748
+ batch tensor after cp: tokens torch.Size([16, 8192])
3749
+ batch tensor after cp: labels torch.Size([16, 8192])
3750
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3751
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3752
+ batch tensor after cp: tokens torch.Size([16, 8192])
3753
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3754
+ batch tensor after cp: labels torch.Size([16, 8192])
3755
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3756
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3757
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3758
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3759
+ Start exporting trace 3
3760
+ Done exporting trace 3
3761
+ [2025-06-21 21:33:57] iteration 4/ 10 | consumed samples: 4 | elapsed time per iteration (ms): 922.5 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 536870912.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
3762
+ batch tensor: tokens torch.Size([16, 32768])
3763
+ batch tensor: labels torch.Size([16, 32768])
3764
+ batch tensor: loss_mask torch.Size([16, 32768])
3765
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3766
+ batch tensor: position_ids torch.Size([16, 32768])
3767
+ batch tensor after cp: tokens torch.Size([16, 8192])
3768
+ batch tensor after cp: labels torch.Size([16, 8192])
3769
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3770
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3771
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3772
+ batch tensor: tokens torch.Size([16, 32768])
3773
+ batch tensor: labels torch.Size([16, 32768])
3774
+ batch tensor: loss_mask torch.Size([16, 32768])
3775
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3776
+ batch tensor: position_ids torch.Size([16, 32768])
3777
+ batch tensor: tokens torch.Size([16, 32768])
3778
+ batch tensor: labels torch.Size([16, 32768])
3779
+ batch tensor: loss_mask torch.Size([16, 32768])
3780
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3781
+ batch tensor: position_ids torch.Size([16, 32768])
3782
+ batch tensor after cp: tokens torch.Size([16, 8192])
3783
+ batch tensor after cp: labels torch.Size([16, 8192])
3784
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3785
+ batch tensor after cp: tokens torch.Size([16, 8192])
3786
+ batch tensor after cp: labels torch.Size([16, 8192])
3787
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3788
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3789
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3790
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3791
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3792
+ batch tensor: tokens torch.Size([16, 32768])
3793
+ batch tensor: labels torch.Size([16, 32768])
3794
+ batch tensor: tokens torch.Size([16, 32768])
3795
+ batch tensor: labels torch.Size([16, 32768])
3796
+ batch tensor: loss_mask torch.Size([16, 32768])
3797
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3798
+ batch tensor: loss_mask torch.Size([16, 32768])
3799
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3800
+ batch tensor: position_ids torch.Size([16, 32768])
3801
+ batch tensor: position_ids torch.Size([16, 32768])
3802
+ batch tensor after cp: tokens torch.Size([16, 8192])
3803
+ batch tensor after cp: labels torch.Size([16, 8192])
3804
+ batch tensor after cp: tokens torch.Size([16, 8192])
3805
+ batch tensor after cp: labels torch.Size([16, 8192])
3806
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3807
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3808
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3809
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3810
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3811
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3812
+ batch tensor: tokens torch.Size([16, 32768])
3813
+ batch tensor: labels torch.Size([16, 32768])
3814
+ batch tensor: loss_mask torch.Size([16, 32768])
3815
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3816
+ batch tensor: position_ids torch.Size([16, 32768])
3817
+ batch tensor: tokens torch.Size([16, 32768])
3818
+ batch tensor after cp: tokens torch.Size([16, 8192])
3819
+ batch tensor after cp: labels torch.Size([16, 8192])
3820
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3821
+ batch tensor: labels torch.Size([16, 32768])
3822
+ batch tensor: loss_mask torch.Size([16, 32768])
3823
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3824
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3825
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3826
+ batch tensor: tokens torch.Size([16, 32768])
3827
+ batch tensor: position_ids torch.Size([16, 32768])
3828
+ batch tensor: labels torch.Size([16, 32768])
3829
+ batch tensor after cp: tokens torch.Size([16, 8192])
3830
+ batch tensor after cp: labels torch.Size([16, 8192])
3831
+ batch tensor: loss_mask torch.Size([16, 32768])
3832
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3833
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3834
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3835
+ batch tensor: position_ids torch.Size([16, 32768])
3836
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3837
+ batch tensor after cp: tokens torch.Size([16, 8192])
3838
+ batch tensor after cp: labels torch.Size([16, 8192])
3839
+ batch tensor: tokens torch.Size([16, 32768])
3840
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3841
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3842
+ batch tensor: labels torch.Size([16, 32768])
3843
+ batch tensor: loss_mask torch.Size([16, 32768])
3844
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3845
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3846
+ batch tensor: tokens torch.Size([16, 32768])
3847
+ batch tensor: position_ids torch.Size([16, 32768])
3848
+ batch tensor: labels torch.Size([16, 32768])
3849
+ batch tensor: tokens torch.Size([16, 32768])
3850
+ batch tensor: loss_mask torch.Size([16, 32768])
3851
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3852
+ batch tensor: labels torch.Size([16, 32768])
3853
+ batch tensor: position_ids torch.Size([16, 32768])
3854
+ batch tensor: loss_mask torch.Size([16, 32768])
3855
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3856
+ batch tensor: tokens torch.Size([16, 32768])
3857
+ batch tensor: position_ids torch.Size([16, 32768])
3858
+ batch tensor: labels torch.Size([16, 32768])
3859
+ batch tensor: loss_mask torch.Size([16, 32768])
3860
+ batch tensor after cp: tokens torch.Size([16, 8192])
3861
+ batch tensor after cp: labels torch.Size([16, 8192])
3862
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3863
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3864
+ batch tensor: position_ids torch.Size([16, 32768])
3865
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3866
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3867
+ batch tensor after cp: tokens torch.Size([16, 8192])
3868
+ batch tensor after cp: labels torch.Size([16, 8192])
3869
+ batch tensor after cp: tokens torch.Size([16, 8192])
3870
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3871
+ batch tensor after cp: labels torch.Size([16, 8192])
3872
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3873
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3874
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3875
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3876
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3877
+ batch tensor after cp: tokens torch.Size([16, 8192])
3878
+ batch tensor after cp: labels torch.Size([16, 8192])
3879
+ batch tensor: tokens torch.Size([16, 32768])
3880
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3881
+ batch tensor: labels torch.Size([16, 32768])
3882
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3883
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3884
+ batch tensor: loss_mask torch.Size([16, 32768])
3885
+ batch tensor: tokens torch.Size([16, 32768])
3886
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3887
+ batch tensor: labels torch.Size([16, 32768])
3888
+ batch tensor: position_ids torch.Size([16, 32768])
3889
+ batch tensor: loss_mask torch.Size([16, 32768])
3890
+ batch tensor after cp: tokens torch.Size([16, 8192])
3891
+ batch tensor after cp: labels torch.Size([16, 8192])
3892
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3893
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3894
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3895
+ batch tensor: position_ids torch.Size([16, 32768])
3896
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3897
+ batch tensor after cp: tokens torch.Size([16, 8192])
3898
+ batch tensor after cp: labels torch.Size([16, 8192])
3899
+ batch tensor: tokens torch.Size([16, 32768])
3900
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3901
+ batch tensor: labels torch.Size([16, 32768])
3902
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3903
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3904
+ batch tensor: loss_mask torch.Size([16, 32768])
3905
+ batch tensor: tokens torch.Size([16, 32768])
3906
+ batch tensor: labels torch.Size([16, 32768])
3907
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3908
+ batch tensor: loss_mask torch.Size([16, 32768])
3909
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3910
+ batch tensor: position_ids torch.Size([16, 32768])
3911
+ batch tensor: position_ids torch.Size([16, 32768])
3912
+ batch tensor after cp: tokens torch.Size([16, 8192])
3913
+ batch tensor after cp: tokens torch.Size([16, 8192])
3914
+ batch tensor after cp: labels torch.Size([16, 8192])
3915
+ batch tensor after cp: labels torch.Size([16, 8192])
3916
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3917
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3918
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3919
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3920
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3921
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3922
+ Start exporting trace 4
3923
+ Done exporting trace 4
3924
+ [2025-06-21 21:33:58] iteration 5/ 10 | consumed samples: 5 | elapsed time per iteration (ms): 928.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 268435456.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
3925
+ batch tensor: tokens torch.Size([16, 32768])
3926
+ batch tensor: labels torch.Size([16, 32768])
3927
+ batch tensor: loss_mask torch.Size([16, 32768])
3928
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3929
+ batch tensor: position_ids torch.Size([16, 32768])
3930
+ batch tensor after cp: tokens torch.Size([16, 8192])
3931
+ batch tensor after cp: labels torch.Size([16, 8192])
3932
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3933
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3934
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3935
+ batch tensor: tokens torch.Size([16, 32768])
3936
+ batch tensor: labels torch.Size([16, 32768])
3937
+ batch tensor: loss_mask torch.Size([16, 32768])
3938
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3939
+ batch tensor: position_ids torch.Size([16, 32768])
3940
+ batch tensor: tokens torch.Size([16, 32768])
3941
+ batch tensor: labels torch.Size([16, 32768])
3942
+ batch tensor after cp: tokens torch.Size([16, 8192])
3943
+ batch tensor after cp: labels torch.Size([16, 8192])
3944
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3945
+ batch tensor: loss_mask torch.Size([16, 32768])
3946
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3947
+ batch tensor: position_ids torch.Size([16, 32768])
3948
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3949
+ batch tensor after cp: tokens torch.Size([16, 8192])
3950
+ batch tensor after cp: labels torch.Size([16, 8192])
3951
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3952
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3953
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3954
+ batch tensor:batch tensor after cp: position_ids torch.Size([16, 8192])
3955
+ batch tensor: tokens torch.Size([16, 32768])
3956
+ batch tensor: labels torch.Size([16, 32768])
3957
+ batch tensor: loss_mask torch.Size([16, 32768])
3958
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3959
+ batch tensor: position_ids torch.Size([16, 32768])
3960
+ tokens torch.Size([16, 32768])
3961
+ batch tensor: tokens torch.Size([16, 32768])
3962
+ batch tensor: labels torch.Size([16, 32768])
3963
+ batch tensor: loss_mask torch.Size([16, 32768])
3964
+ batch tensor: labels torch.Size([16, 32768])
3965
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3966
+ batch tensor: position_ids torch.Size([16, 32768])
3967
+ batch tensor: loss_mask torch.Size([16, 32768])
3968
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3969
+ batch tensor: tokens torch.Size([16, 32768])
3970
+ batch tensor: position_ids torch.Size([16, 32768])
3971
+ batch tensor: labels torch.Size([16, 32768])
3972
+ batch tensor after cp: tokens torch.Size([16, 8192])
3973
+ batch tensor after cp: labels torch.Size([16, 8192])
3974
+ batch tensor: loss_mask torch.Size([16, 32768])
3975
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3976
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3977
+ batch tensor: position_ids torch.Size([16, 32768])
3978
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3979
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3980
+ batch tensor after cp: tokens torch.Size([16, 8192])
3981
+ batch tensor after cp: labels torch.Size([16, 8192])
3982
+ batch tensor after cp: tokens torch.Size([16, 8192])
3983
+ batch tensor after cp: labels torch.Size([16, 8192])
3984
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3985
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3986
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3987
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3988
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3989
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3990
+ batch tensor after cp: tokens torch.Size([16, 8192])
3991
+ batch tensor after cp: labels torch.Size([16, 8192])
3992
+ batch tensor: tokens torch.Size([16, 32768])
3993
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
3994
+ batch tensor: labels torch.Size([16, 32768])
3995
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
3996
+ batch tensor: loss_mask torch.Size([16, 32768])
3997
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
3998
+ batch tensor after cp: position_ids torch.Size([16, 8192])
3999
+ batch tensor: position_ids torch.Size([16, 32768])
4000
+ batch tensor: tokens torch.Size([16, 32768])
4001
+ batch tensor: tokens torch.Size([16, 32768])
4002
+ batch tensor: labels torch.Size([16, 32768])
4003
+ batch tensor: labels torch.Size([16, 32768])
4004
+ batch tensor: loss_mask torch.Size([16, 32768])
4005
+ batch tensor: loss_mask torch.Size([16, 32768])
4006
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4007
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4008
+ batch tensor: position_ids torch.Size([16, 32768])
4009
+ batch tensor: position_ids torch.Size([16, 32768])
4010
+ batch tensor after cp: tokens torch.Size([16, 8192])
4011
+ batch tensor after cp: labels torch.Size([16, 8192])
4012
+ batch tensor after cp: tokens torch.Size([16, 8192])
4013
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4014
+ batch tensor after cp: labels torch.Size([16, 8192])
4015
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4016
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4017
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4018
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4019
+ batch tensor: tokens torch.Size([16, 32768])
4020
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4021
+ batch tensor: labels torch.Size([16, 32768])
4022
+ batch tensor after cp: tokens torch.Size([16, 8192])
4023
+ batch tensor after cp: labels torch.Size([16, 8192])
4024
+ batch tensor: loss_mask torch.Size([16, 32768])
4025
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4026
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4027
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4028
+ batch tensor: position_ids torch.Size([16, 32768])
4029
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4030
+ batch tensor after cp: tokens torch.Size([16, 8192])
4031
+ batch tensor after cp: labels torch.Size([16, 8192])
4032
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4033
+ batch tensor: tokens torch.Size([16, 32768])
4034
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4035
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4036
+ batch tensor: labels torch.Size([16, 32768])
4037
+ batch tensor: tokens torch.Size([16, 32768])
4038
+ batch tensor: loss_mask torch.Size([16, 32768])
4039
+ batch tensor: labels torch.Size([16, 32768])
4040
+ batch tensor: loss_mask torch.Size([16, 32768])
4041
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4042
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4043
+ batch tensor: position_ids torch.Size([16, 32768])
4044
+ batch tensor: position_ids torch.Size([16, 32768])
4045
+ batch tensor after cp: tokens torch.Size([16, 8192])
4046
+ batch tensor after cp: labels torch.Size([16, 8192])
4047
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4048
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4049
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4050
+ batch tensor after cp: tokens torch.Size([16, 8192])
4051
+ batch tensor after cp: labels torch.Size([16, 8192])
4052
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4053
+ batch tensor: tokens torch.Size([16, 32768])
4054
+ batch tensor: labels torch.Size([16, 32768])
4055
+ batch tensor: loss_mask torch.Size([16, 32768])
4056
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4057
+ batch tensor: position_ids torch.Size([16, 32768])
4058
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4059
+ batch tensor after cp: tokens torch.Size([16, 8192])
4060
+ batch tensor after cp: labels torch.Size([16, 8192])
4061
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4062
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4063
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4064
+ batch tensor: tokens torch.Size([16, 32768])
4065
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4066
+ batch tensor: labels torch.Size([16, 32768])
4067
+ batch tensor: loss_mask torch.Size([16, 32768])
4068
+ batch tensor: tokens torch.Size([16, 32768])
4069
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4070
+ batch tensor: labels torch.Size([16, 32768])
4071
+ batch tensor: position_ids torch.Size([16, 32768])
4072
+ batch tensor: loss_mask torch.Size([16, 32768])
4073
+ batch tensor after cp: tokens torch.Size([16, 8192])
4074
+ batch tensor after cp: labels torch.Size([16, 8192])
4075
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4076
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4077
+ batch tensor: position_ids torch.Size([16, 32768])
4078
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4079
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4080
+ batch tensor after cp: tokens torch.Size([16, 8192])
4081
+ batch tensor after cp: labels torch.Size([16, 8192])
4082
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4083
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4084
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4085
+ Start exporting trace 5
4086
+ Done exporting trace 5
4087
+ [2025-06-21 21:33:59] iteration 6/ 10 | consumed samples: 6 | elapsed time per iteration (ms): 928.5 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 134217728.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
4088
+ batch tensor: tokens torch.Size([16, 32768])
4089
+ batch tensor: labels torch.Size([16, 32768])
4090
+ batch tensor: loss_mask torch.Size([16, 32768])
4091
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4092
+ batch tensor: position_ids torch.Size([16, 32768])
4093
+ batch tensor after cp: tokens torch.Size([16, 8192])
4094
+ batch tensor after cp: labels torch.Size([16, 8192])
4095
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4096
+ batch tensor: tokens torch.Size([16, 32768])
4097
+ batch tensor: labels torch.Size([16, 32768])
4098
+ batch tensor: loss_mask torch.Size([16, 32768])
4099
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4100
+ batch tensor: position_ids torch.Size([16, 32768])
4101
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4102
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4103
+ batch tensor after cp: tokens torch.Size([16, 8192])
4104
+ batch tensor after cp: labels torch.Size([16, 8192])
4105
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4106
+ batch tensor: tokens torch.Size([16, 32768])
4107
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4108
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4109
+ batch tensor: labels torch.Size([16, 32768])
4110
+ batch tensor: loss_mask torch.Size([16, 32768])
4111
+ batch tensor: tokens torch.Size([16, 32768])
4112
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4113
+ batch tensor: position_ids torch.Size([16, 32768])
4114
+ batch tensor: labels torch.Size([16, 32768])
4115
+ batch tensor: loss_mask torch.Size([16, 32768])
4116
+ batch tensor after cp: tokens torch.Size([16, 8192])
4117
+ batch tensor after cp: labels torch.Size([16, 8192])
4118
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4119
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4120
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4121
+ batch tensor: position_ids torch.Size([16, 32768])
4122
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4123
+ batch tensor after cp: tokens torch.Size([16, 8192])
4124
+ batch tensor after cp: labels torch.Size([16, 8192])
4125
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4126
+ batch tensor: tokens torch.Size([16, 32768])
4127
+ batch tensor: labels torch.Size([16, 32768])
4128
+ batch tensor: loss_mask torch.Size([16, 32768])
4129
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4130
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4131
+ batch tensor: position_ids torch.Size([16, 32768])
4132
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4133
+ batch tensor after cp: tokens torch.Size([16, 8192])
4134
+ batch tensor after cp: labels torch.Size([16, 8192])
4135
+ batch tensor: tokens torch.Size([16, 32768])
4136
+ batch tensor: labels batch tensor:torch.Size([16, 32768])
4137
+ batch tensor: loss_mask tokenstorch.Size([16, 32768])
4138
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4139
+ torch.Size([16, 32768])batch tensor:
4140
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4141
+ position_idsbatch tensor: labelstorch.Size([16, 32768])
4142
+ torch.Size([16, 32768])
4143
+ batch tensor: loss_mask torch.Size([16, 32768])
4144
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4145
+ batch tensor: position_ids torch.Size([16, 32768])
4146
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4147
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4148
+ batch tensor: tokens torch.Size([16, 32768])
4149
+ batch tensor: labels torch.Size([16, 32768])
4150
+ batch tensor: loss_mask torch.Size([16, 32768])
4151
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4152
+ batch tensor: position_ids torch.Size([16, 32768])
4153
+ batch tensor: tokens torch.Size([16, 32768])
4154
+ batch tensor after cp: tokens torch.Size([16, 8192])
4155
+ batch tensor after cp: labels torch.Size([16, 8192])
4156
+ batch tensor: labels torch.Size([16, 32768])
4157
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4158
+ batch tensor: loss_mask torch.Size([16, 32768])
4159
+ batch tensor after cp: attention_maskbatch tensor after cp: tokenstorch.Size([16, 1, 8192, 32768])
4160
+ batch tensor after cp:torch.Size([16, 8192])
4161
+ position_idsbatch tensor after cp: batch tensor after cp: torch.Size([16, 8192]) tokens
4162
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4163
+ labels torch.Size([16, 8192])torch.Size([16, 8192])
4164
+
4165
+ batch tensor after cp:batch tensor after cp: loss_masklabels torch.Size([16, 8192])torch.Size([16, 8192])
4166
+
4167
+ batch tensor: position_ids torch.Size([16, 32768])
4168
+ batch tensor after cp:batch tensor after cp: attention_maskloss_mask torch.Size([16, 8192])torch.Size([16, 1, 8192, 32768])
4169
+
4170
+ batch tensor after cp:batch tensor after cp: attention_maskposition_ids torch.Size([16, 8192])torch.Size([16, 1, 8192, 32768])
4171
+
4172
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4173
+ batch tensor after cp: tokens torch.Size([16, 8192])
4174
+ batch tensor after cp: labels torch.Size([16, 8192])
4175
+ batch tensor: tokens torch.Size([16, 32768])
4176
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4177
+ batch tensor: labels torch.Size([16, 32768])
4178
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4179
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4180
+ batch tensor: loss_mask torch.Size([16, 32768])
4181
+ batch tensor: tokens torch.Size([16, 32768])
4182
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4183
+ batch tensor: labels torch.Size([16, 32768])
4184
+ batch tensor: position_ids torch.Size([16, 32768])
4185
+ batch tensor: loss_mask torch.Size([16, 32768])
4186
+ batch tensor after cp: tokens torch.Size([16, 8192])
4187
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4188
+ batch tensor after cp: labels torch.Size([16, 8192])
4189
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4190
+ batch tensor: position_ids torch.Size([16, 32768])
4191
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4192
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4193
+ batch tensor after cp: tokens torch.Size([16, 8192])
4194
+ batch tensor after cp: labels torch.Size([16, 8192])
4195
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4196
+ batch tensor: tokens torch.Size([16, 32768])
4197
+ batch tensor: labels torch.Size([16, 32768])
4198
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4199
+ batch tensor: loss_mask torch.Size([16, 32768])
4200
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4201
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4202
+ batch tensor: position_ids torch.Size([16, 32768])
4203
+ batch tensor: tokens torch.Size([16, 32768])
4204
+ batch tensor: tokens torch.Size([16, 32768])
4205
+ batch tensor: labels torch.Size([16, 32768])
4206
+ batch tensor: loss_mask torch.Size([16, 32768])
4207
+ batch tensor: labels torch.Size([16, 32768])
4208
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4209
+ batch tensor: loss_mask torch.Size([16, 32768])
4210
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4211
+ batch tensor: position_ids torch.Size([16, 32768])
4212
+ batch tensor: position_ids torch.Size([16, 32768])
4213
+ batch tensor after cp: tokens torch.Size([16, 8192])
4214
+ batch tensor after cp: labels torch.Size([16, 8192])
4215
+ batch tensor after cp: tokens torch.Size([16, 8192])
4216
+ batch tensor after cp: labels torch.Size([16, 8192])
4217
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4218
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4219
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4220
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4221
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4222
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4223
+ batch tensor after cp: tokens torch.Size([16, 8192])
4224
+ batch tensor after cp: labels torch.Size([16, 8192])
4225
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4226
+ batch tensor: tokens torch.Size([16, 32768])
4227
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4228
+ batch tensor: labels torch.Size([16, 32768])
4229
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4230
+ batch tensor: loss_mask torch.Size([16, 32768])
4231
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4232
+ batch tensor: position_ids torch.Size([16, 32768])
4233
+ batch tensor: tokens torch.Size([16, 32768])
4234
+ batch tensor: labels torch.Size([16, 32768])
4235
+ batch tensor: loss_mask torch.Size([16, 32768])
4236
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4237
+ batch tensor: position_ids torch.Size([16, 32768])
4238
+ batch tensor after cp: tokens torch.Size([16, 8192])
4239
+ batch tensor after cp: labels torch.Size([16, 8192])
4240
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4241
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4242
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4243
+ batch tensor after cp: tokens torch.Size([16, 8192])
4244
+ batch tensor after cp: labels torch.Size([16, 8192])
4245
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4246
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4247
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4248
+ Start exporting trace 6
4249
+ Done exporting trace 6
4250
+ [2025-06-21 21:34:00] iteration 7/ 10 | consumed samples: 7 | elapsed time per iteration (ms): 930.0 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 67108864.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
4251
+ batch tensor: tokens torch.Size([16, 32768])
4252
+ batch tensor: labels torch.Size([16, 32768])
4253
+ batch tensor: loss_mask torch.Size([16, 32768])
4254
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4255
+ batch tensor: position_ids torch.Size([16, 32768])
4256
+ batch tensor after cp: tokens torch.Size([16, 8192])
4257
+ batch tensor after cp: labels torch.Size([16, 8192])
4258
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4259
+ batch tensor: tokens torch.Size([16, 32768])
4260
+ batch tensor: labels torch.Size([16, 32768])
4261
+ batch tensor: loss_mask torch.Size([16, 32768])
4262
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4263
+ batch tensor: position_ids torch.Size([16, 32768])
4264
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4265
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4266
+ batch tensor: tokens batch tensor after cp: tokenstorch.Size([16, 32768])
4267
+ torch.Size([16, 8192])
4268
+ batch tensor: batch tensor after cp:labels labels torch.Size([16, 32768])torch.Size([16, 8192])
4269
+
4270
+ batch tensor:batch tensor after cp: loss_maskloss_mask torch.Size([16, 32768])torch.Size([16, 8192])
4271
+
4272
+ batch tensor: tokens torch.Size([16, 32768])
4273
+ batch tensor after cp:batch tensor: attention_maskattention_mask torch.Size([16, 1, 8192, 32768])
4274
+ torch.Size([16, 1, 32768, 32768])batch tensor after cp:
4275
+ position_idsbatch tensor: torch.Size([16, 8192])position_ids
4276
+ torch.Size([16, 32768])
4277
+ batch tensor: labels torch.Size([16, 32768])
4278
+ batch tensor: loss_mask torch.Size([16, 32768])
4279
+ batch tensor after cp: tokens torch.Size([16, 8192])
4280
+ batch tensor after cp: labels torch.Size([16, 8192])
4281
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4282
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4283
+ batch tensor: position_ids torch.Size([16, 32768])
4284
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4285
+ batch tensor after cp: tokens torch.Size([16, 8192])
4286
+ batch tensor after cp: labels torch.Size([16, 8192])
4287
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4288
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4289
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4290
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4291
+ batch tensor: tokens torch.Size([16, 32768])
4292
+ batch tensor: labels torch.Size([16, 32768])
4293
+ batch tensor: loss_mask torch.Size([16, 32768])
4294
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4295
+ batch tensor: position_ids torch.Size([16, 32768])
4296
+ batch tensor after cp: tokens torch.Size([16, 8192])
4297
+ batch tensor after cp: labels torch.Size([16, 8192])
4298
+ batch tensor: tokens torch.Size([16, 32768])
4299
+ batch tensor: labels torch.Size([16, 32768])
4300
+ batch tensor: loss_mask torch.Size([16, 32768])
4301
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4302
+ batch tensor: position_ids torch.Size([16, 32768])
4303
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4304
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4305
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4306
+ batch tensor after cp: tokens torch.Size([16, 8192])
4307
+ batch tensor after cp: labels torch.Size([16, 8192])
4308
+ batch tensor: tokens torch.Size([16, 32768])
4309
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4310
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4311
+ batch tensor: labels torch.Size([16, 32768])
4312
+ batch tensor: loss_mask torch.Size([16, 32768])
4313
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4314
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4315
+ batch tensor: tokens torch.Size([16, 32768])
4316
+ batch tensor: labels torch.Size([16, 32768])
4317
+ batch tensor: position_ids torch.Size([16, 32768])
4318
+ batch tensor: loss_mask torch.Size([16, 32768])
4319
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4320
+ batch tensor: tokens torch.Size([16, 32768])
4321
+ batch tensor: position_ids torch.Size([16, 32768])
4322
+ batch tensor: labels torch.Size([16, 32768])
4323
+ batch tensor: loss_mask torch.Size([16, 32768])
4324
+ batch tensor: tokens torch.Size([16, 32768])
4325
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4326
+ batch tensor: position_ids torch.Size([16, 32768])
4327
+ batch tensor: labels torch.Size([16, 32768])
4328
+ batch tensor after cp: tokens torch.Size([16, 8192])
4329
+ batch tensor: loss_mask torch.Size([16, 32768])
4330
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4331
+ batch tensor after cp: labels torch.Size([16, 8192])
4332
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4333
+ batch tensor: position_ids torch.Size([16, 32768])
4334
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4335
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4336
+ batch tensor after cp: tokens torch.Size([16, 8192])
4337
+ batch tensor after cp: labels torch.Size([16, 8192])
4338
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4339
+ batch tensor after cp: tokens torch.Size([16, 8192])
4340
+ batch tensor after cp: labels torch.Size([16, 8192])
4341
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4342
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4343
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4344
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4345
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4346
+ batch tensor after cp: tokens torch.Size([16, 8192])
4347
+ batch tensor after cp: labels torch.Size([16, 8192])
4348
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4349
+ batch tensor: tokens torch.Size([16, 32768])
4350
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4351
+ batch tensor: labels torch.Size([16, 32768])
4352
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4353
+ batch tensor: loss_mask torch.Size([16, 32768])
4354
+ batch tensor: tokens torch.Size([16, 32768])
4355
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4356
+ batch tensor: position_ids torch.Size([16, 32768])
4357
+ batch tensor: labels torch.Size([16, 32768])
4358
+ batch tensor after cp: tokens torch.Size([16, 8192])
4359
+ batch tensor after cp: labels torch.Size([16, 8192])
4360
+ batch tensor: loss_mask torch.Size([16, 32768])
4361
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4362
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4363
+ batch tensor: position_ids torch.Size([16, 32768])
4364
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4365
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4366
+ batch tensor: tokens torch.Size([16, 32768])
4367
+ batch tensor: tokens torch.Size([16, 32768])
4368
+ batch tensor: labels torch.Size([16, 32768])
4369
+ batch tensor: loss_mask torch.Size([16, 32768])
4370
+ batch tensor: labels torch.Size([16, 32768])
4371
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4372
+ batch tensor: loss_mask torch.Size([16, 32768])
4373
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4374
+ batch tensor: position_ids torch.Size([16, 32768])
4375
+ batch tensor: position_ids torch.Size([16, 32768])
4376
+ batch tensor: tokens torch.Size([16, 32768])
4377
+ batch tensor after cp: tokens torch.Size([16, 8192])
4378
+ batch tensor: labels torch.Size([16, 32768])
4379
+ batch tensor after cp: labels torch.Size([16, 8192])
4380
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4381
+ batch tensor: loss_mask torch.Size([16, 32768])
4382
+ batch tensor after cp: attention_mask batch tensor:torch.Size([16, 1, 8192, 32768])
4383
+ batch tensor after cp: position_idstokens torch.Size([16, 8192])
4384
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4385
+ torch.Size([16, 32768])
4386
+ batch tensor: labels torch.Size([16, 32768])
4387
+ batch tensor: position_ids torch.Size([16, 32768])
4388
+ batch tensor: loss_mask torch.Size([16, 32768])
4389
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4390
+ batch tensor after cp: tokens torch.Size([16, 8192])
4391
+ batch tensor after cp: labels torch.Size([16, 8192])
4392
+ batch tensor: position_ids torch.Size([16, 32768])
4393
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4394
+ batch tensor after cp: tokens torch.Size([16, 8192])
4395
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4396
+ batch tensor after cp: labels torch.Size([16, 8192])
4397
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4398
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4399
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4400
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4401
+ batch tensor after cp: tokens torch.Size([16, 8192])
4402
+ batch tensor after cp: tokens torch.Size([16, 8192])
4403
+ batch tensor after cp: labels torch.Size([16, 8192])
4404
+ batch tensor after cp: labels torch.Size([16, 8192])
4405
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4406
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4407
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4408
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4409
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4410
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4411
+ Start exporting trace 7
4412
+ Done exporting trace 7
4413
+ [2025-06-21 21:34:01] iteration 8/ 10 | consumed samples: 8 | elapsed time per iteration (ms): 928.6 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 33554432.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
4414
+ batch tensor: tokens torch.Size([16, 32768])
4415
+ batch tensor: labels torch.Size([16, 32768])
4416
+ batch tensor: loss_mask torch.Size([16, 32768])
4417
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4418
+ batch tensor: position_ids torch.Size([16, 32768])
4419
+ batch tensor after cp: tokens torch.Size([16, 8192])
4420
+ batch tensor after cp: labels torch.Size([16, 8192])
4421
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4422
+ batch tensor: tokens torch.Size([16, 32768])
4423
+ batch tensor: labels torch.Size([16, 32768])
4424
+ batch tensor: loss_mask torch.Size([16, 32768])
4425
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4426
+ batch tensor: position_ids torch.Size([16, 32768])
4427
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4428
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4429
+ batch tensor after cp: tokens torch.Size([16, 8192])
4430
+ batch tensor after cp: labels torch.Size([16, 8192])
4431
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4432
+ batch tensor: tokens torch.Size([16, 32768])
4433
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4434
+ batch tensor: labels torch.Size([16, 32768])
4435
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4436
+ batch tensor: loss_mask torch.Size([16, 32768])
4437
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4438
+ batch tensor: tokens torch.Size([16, 32768])
4439
+ batch tensor: position_ids torch.Size([16, 32768])
4440
+ batch tensor: labels torch.Size([16, 32768])
4441
+ batch tensor: loss_mask torch.Size([16, 32768])
4442
+ batch tensor after cp: tokens torch.Size([16, 8192])
4443
+ batch tensor after cp: labels torch.Size([16, 8192])
4444
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4445
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4446
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4447
+ batch tensor: position_ids torch.Size([16, 32768])
4448
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4449
+ batch tensor after cp: tokens torch.Size([16, 8192])
4450
+ batch tensor after cp: labels torch.Size([16, 8192])
4451
+ batch tensor: tokens torch.Size([16, 32768])
4452
+ batch tensor: labels torch.Size([16, 32768])
4453
+ batch tensor: loss_mask torch.Size([16, 32768])
4454
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4455
+ batch tensor: position_ids torch.Size([16, 32768])
4456
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4457
+ batch tensor after cp: tokens torch.Size([16, 8192])
4458
+ batch tensor after cp: labels torch.Size([16, 8192])
4459
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4460
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4461
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4462
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4463
+ batch tensor: tokens torch.Size([16, 32768])
4464
+ batch tensor: labels torch.Size([16, 32768])
4465
+ batch tensor: loss_mask torch.Size([16, 32768])
4466
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4467
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4468
+ batch tensor: position_ids torch.Size([16, 32768])
4469
+ batch tensor: tokens torch.Size([16, 32768])
4470
+ batch tensor after cp: tokens torch.Size([16, 8192])
4471
+ batch tensor after cp: labels torch.Size([16, 8192])
4472
+ batch tensor: labels torch.Size([16, 32768])
4473
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4474
+ batch tensor: loss_mask torch.Size([16, 32768])
4475
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4476
+ batch tensor: position_ids torch.Size([16, 32768])
4477
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4478
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4479
+ batch tensor: tokens torch.Size([16, 32768])
4480
+ batch tensor: tokens torch.Size([16, 32768])
4481
+ batch tensor: labels torch.Size([16, 32768])
4482
+ batch tensor: loss_mask torch.Size([16, 32768])
4483
+ batch tensor: labels torch.Size([16, 32768])
4484
+ batch tensor: loss_mask torch.Size([16, 32768])
4485
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4486
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4487
+ batch tensor: position_ids torch.Size([16, 32768])
4488
+ batch tensor: position_ids torch.Size([16, 32768])
4489
+ batch tensor after cp: tokens torch.Size([16, 8192])
4490
+ batch tensor after cp: labels torch.Size([16, 8192])
4491
+ batch tensor after cp: tokens torch.Size([16, 8192])
4492
+ batch tensor after cp: labels torch.Size([16, 8192])
4493
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4494
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4495
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4496
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4497
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4498
+ batch tensor: tokens torch.Size([16, 32768])
4499
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4500
+ batch tensor: labels torch.Size([16, 32768])
4501
+ batch tensor: tokens torch.Size([16, 32768])
4502
+ batch tensor: loss_mask torch.Size([16, 32768])
4503
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4504
+ batch tensor: position_ids torch.Size([16, 32768])
4505
+ batch tensor: labels torch.Size([16, 32768])
4506
+ batch tensor: loss_mask torch.Size([16, 32768])
4507
+ batch tensor: tokens torch.Size([16, 32768])
4508
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4509
+ batch tensor: position_ids torch.Size([16, 32768])
4510
+ batch tensor: labelsbatch tensor after cp: torch.Size([16, 32768])tokens
4511
+ batch tensor: tokens torch.Size([16, 32768])
4512
+ batch tensor: torch.Size([16, 8192])loss_mask
4513
+ torch.Size([16, 32768])batch tensor after cp:
4514
+ labels batch tensor:torch.Size([16, 8192])
4515
+ attention_maskbatch tensor after cp: loss_masktorch.Size([16, 1, 32768, 32768])
4516
+ torch.Size([16, 8192])
4517
+ batch tensor: labels torch.Size([16, 32768])
4518
+ batch tensor: loss_mask torch.Size([16, 32768])
4519
+ batch tensor:batch tensor after cp: position_idsattention_mask torch.Size([16, 32768])torch.Size([16, 1, 8192, 32768])
4520
+
4521
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4522
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4523
+ batch tensor after cp: tokens torch.Size([16, 8192])
4524
+ batch tensor after cp: labels torch.Size([16, 8192])
4525
+ batch tensor: position_ids torch.Size([16, 32768])
4526
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4527
+ batch tensor after cp: tokens torch.Size([16, 8192])
4528
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4529
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4530
+ batch tensor after cp: labels torch.Size([16, 8192])
4531
+ batch tensor after cp: tokens torch.Size([16, 8192])
4532
+ batch tensor after cp: labels torch.Size([16, 8192])
4533
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4534
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4535
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4536
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4537
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4538
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4539
+ batch tensor after cp: tokens torch.Size([16, 8192])
4540
+ batch tensor after cp: labels torch.Size([16, 8192])
4541
+ batch tensor: tokens torch.Size([16, 32768])
4542
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4543
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4544
+ batch tensor: labels torch.Size([16, 32768])
4545
+ batch tensor: loss_mask torch.Size([16, 32768])
4546
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4547
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4548
+ batch tensor: tokens torch.Size([16, 32768])
4549
+ batch tensor: position_ids torch.Size([16, 32768])
4550
+ batch tensor: labels torch.Size([16, 32768])
4551
+ batch tensor after cp: tokens torch.Size([16, 8192])
4552
+ batch tensor after cp: labels torch.Size([16, 8192])
4553
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4554
+ batch tensor: loss_mask torch.Size([16, 32768])
4555
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4556
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4557
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4558
+ batch tensor: position_ids torch.Size([16, 32768])
4559
+ batch tensor after cp: tokens torch.Size([16, 8192])
4560
+ batch tensor after cp: labels torch.Size([16, 8192])
4561
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4562
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4563
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4564
+ batch tensor: tokens torch.Size([16, 32768])
4565
+ batch tensor: labels torch.Size([16, 32768])
4566
+ batch tensor: loss_mask torch.Size([16, 32768])
4567
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4568
+ batch tensor: position_ids torch.Size([16, 32768])
4569
+ batch tensor after cp: tokens torch.Size([16, 8192])
4570
+ batch tensor after cp: labels torch.Size([16, 8192])
4571
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4572
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4573
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4574
+ Start exporting trace 8
4575
+ Done exporting trace 8
4576
+ [2025-06-21 21:34:02] iteration 9/ 10 | consumed samples: 9 | elapsed time per iteration (ms): 926.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 16777216.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
4577
+ batch tensor: tokens torch.Size([16, 32768])
4578
+ batch tensor: labels torch.Size([16, 32768])
4579
+ batch tensor: loss_mask torch.Size([16, 32768])
4580
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4581
+ batch tensor: position_ids torch.Size([16, 32768])
4582
+ batch tensor: tokens torch.Size([16, 32768])
4583
+ batch tensor: labels torch.Size([16, 32768])
4584
+ batch tensor: loss_mask torch.Size([16, 32768])
4585
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4586
+ batch tensor: position_ids torch.Size([16, 32768])
4587
+ batch tensor after cp: tokens torch.Size([16, 8192])
4588
+ batch tensor after cp: labels torch.Size([16, 8192])
4589
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4590
+ batch tensor after cp: tokens torch.Size([16, 8192])
4591
+ batch tensor after cp: labels torch.Size([16, 8192])
4592
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4593
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4594
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4595
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4596
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4597
+ batch tensor: tokens torch.Size([16, 32768])
4598
+ batch tensor: tokens torch.Size([16, 32768])
4599
+ batch tensor: labels torch.Size([16, 32768])
4600
+ batch tensor: loss_mask torch.Size([16, 32768])
4601
+ batch tensor: labels torch.Size([16, 32768])
4602
+ batch tensor: loss_mask torch.Size([16, 32768])
4603
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4604
+ batch tensor: position_ids torch.Size([16, 32768])
4605
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4606
+ batch tensor after cp: tokens torch.Size([16, 8192])
4607
+ batch tensor after cp: labels torch.Size([16, 8192])
4608
+ batch tensor: position_ids torch.Size([16, 32768])
4609
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4610
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4611
+ batch tensor after cp: tokens torch.Size([16, 8192])
4612
+ batch tensor after cp: labels torch.Size([16, 8192])
4613
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4614
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4615
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4616
+ batch tensor: tokens torch.Size([16, 32768])
4617
+ batch tensor: labels torch.Size([16, 32768])
4618
+ batch tensor: loss_mask torch.Size([16, 32768])
4619
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4620
+ batch tensor: position_ids torch.Size([16, 32768])
4621
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4622
+ batch tensor: tokens torch.Size([16, 32768])
4623
+ batch tensor: tokens torch.Size([16, 32768])
4624
+ batch tensor: labels torch.Size([16, 32768])
4625
+ batch tensor: loss_mask torch.Size([16, 32768])
4626
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4627
+ batch tensor: position_ids torch.Size([16, 32768])
4628
+ batch tensor: labels torch.Size([16, 32768])
4629
+ batch tensor: tokens torch.Size([16, 32768])
4630
+ batch tensor: loss_mask torch.Size([16, 32768])
4631
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4632
+ batch tensor: position_ids torch.Size([16, 32768])
4633
+ batch tensor: labels torch.Size([16, 32768])
4634
+ batch tensor after cp: tokens torch.Size([16, 8192])
4635
+ batch tensor after cp: labels torch.Size([16, 8192])
4636
+ batch tensor: loss_mask torch.Size([16, 32768])
4637
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4638
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4639
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4640
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4641
+ batch tensor: position_ids torch.Size([16, 32768])
4642
+ batch tensor after cp: tokens torch.Size([16, 8192])
4643
+ batch tensor after cp: labels torch.Size([16, 8192])
4644
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4645
+ batch tensor: tokens torch.Size([16, 32768])
4646
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4647
+ batch tensor: labels torch.Size([16, 32768])
4648
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4649
+ batch tensor: loss_mask torch.Size([16, 32768])
4650
+ batch tensor: tokens torch.Size([16, 32768])
4651
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4652
+ batch tensor: labels torch.Size([16, 32768])
4653
+ batch tensor: position_ids torch.Size([16, 32768])
4654
+ batch tensor: loss_mask torch.Size([16, 32768])
4655
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4656
+ batch tensor after cp: tokens torch.Size([16, 8192])
4657
+ batch tensor after cp: labels torch.Size([16, 8192])
4658
+ batch tensor: position_ids torch.Size([16, 32768])
4659
+ batch tensor after cp: loss_mask torch.Size([16, 8192])batch tensor:
4660
+ batch tensor: tokens torch.Size([16, 32768])
4661
+ batch tensor after cp: attention_masktokens torch.Size([16, 1, 8192, 32768])
4662
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4663
+ torch.Size([16, 32768])
4664
+ batch tensor: labels torch.Size([16, 32768])
4665
+ batch tensor: labels torch.Size([16, 32768])
4666
+ batch tensor: loss_mask torch.Size([16, 32768])
4667
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4668
+ batch tensor: position_ids torch.Size([16, 32768])
4669
+ batch tensor: loss_mask torch.Size([16, 32768])
4670
+ batch tensor after cp: tokens torch.Size([16, 8192])
4671
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4672
+ batch tensor after cp: labels torch.Size([16, 8192])
4673
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4674
+ batch tensor after cp:batch tensor: tokensposition_ids torch.Size([16, 32768])torch.Size([16, 8192])
4675
+
4676
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4677
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4678
+ batch tensor after cp: labels torch.Size([16, 8192])
4679
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4680
+ batch tensor after cp: tokens torch.Size([16, 8192])
4681
+ batch tensor after cp: labels torch.Size([16, 8192])
4682
+ batch tensor after cp: attention_mask batch tensor:torch.Size([16, 1, 8192, 32768])
4683
+ batch tensor after cp:tokens position_ids torch.Size([16, 8192])
4684
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4685
+ torch.Size([16, 32768])
4686
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4687
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4688
+ batch tensor: labels torch.Size([16, 32768])
4689
+ batch tensor: tokens torch.Size([16, 32768])
4690
+ batch tensor: loss_mask torch.Size([16, 32768])
4691
+ batch tensor: labels torch.Size([16, 32768])
4692
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4693
+ batch tensor: loss_mask torch.Size([16, 32768])
4694
+ batch tensor: position_ids torch.Size([16, 32768])
4695
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4696
+ batch tensor after cp: tokens torch.Size([16, 8192])
4697
+ batch tensor after cp: labels torch.Size([16, 8192])
4698
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4699
+ batch tensor: position_ids torch.Size([16, 32768])
4700
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4701
+ batch tensor: tokens torch.Size([16, 32768])
4702
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4703
+ batch tensor: labels torch.Size([16, 32768])
4704
+ batch tensor after cp: tokens torch.Size([16, 8192])
4705
+ batch tensor after cp: labels torch.Size([16, 8192])
4706
+ batch tensor: loss_mask torch.Size([16, 32768])
4707
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4708
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4709
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4710
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4711
+ batch tensor: position_ids torch.Size([16, 32768])
4712
+ batch tensor after cp: tokens torch.Size([16, 8192])
4713
+ batch tensor after cp: labels torch.Size([16, 8192])
4714
+ batch tensor after cp: tokens torch.Size([16, 8192])
4715
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4716
+ batch tensor after cp: labels torch.Size([16, 8192])
4717
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4718
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4719
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4720
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4721
+ batch tensor: tokens torch.Size([16, 32768])
4722
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4723
+ batch tensor: labels torch.Size([16, 32768])
4724
+ batch tensor after cp: tokens torch.Size([16, 8192])
4725
+ batch tensor: loss_mask torch.Size([16, 32768])
4726
+ batch tensor after cp: labels torch.Size([16, 8192])
4727
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4728
+ batch tensor: attention_mask torch.Size([16, 1, 32768, 32768])
4729
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4730
+ batch tensor: position_ids torch.Size([16, 32768])
4731
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4732
+ batch tensor after cp: tokens torch.Size([16, 8192])
4733
+ batch tensor after cp: labels torch.Size([16, 8192])
4734
+ batch tensor after cp: loss_mask torch.Size([16, 8192])
4735
+ batch tensor after cp: attention_mask torch.Size([16, 1, 8192, 32768])
4736
+ batch tensor after cp: position_ids torch.Size([16, 8192])
4737
+ Start exporting trace 9
4738
+ Done exporting trace 9
4739
+ [2025-06-21 21:34:03] iteration 10/ 10 | consumed samples: 10 | elapsed time per iteration (ms): 924.0 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 8388608.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
4740
+ [after training is done] datetime: 2025-06-21 21:34:03
4741
+ saving checkpoint at iteration 10 to gpt-checkpoint in torch_dist format
4742
+ DEBUG:megatron.training.checkpointing:rank: 15, takes 0.026693105697631836 to prepare state dict for ckpt
4743
+ DEBUG:megatron.training.checkpointing:rank: 9, takes 0.0267791748046875 to prepare state dict for ckpt
4744
+ DEBUG:megatron.training.checkpointing:rank: 13, takes 0.027100086212158203 to prepare state dict for ckpt
4745
+ DEBUG:megatron.training.checkpointing:rank: 11, takes 0.027242422103881836 to prepare state dict for ckpt
4746
+ DEBUG:megatron.training.checkpointing:rank: 10, takes 0.02791142463684082 to prepare state dict for ckpt
4747
+ DEBUG:megatron.training.checkpointing:rank: 6, takes 0.030647754669189453 to prepare state dict for ckpt
4748
+ DEBUG:megatron.training.checkpointing:rank: 12, takes 0.028069019317626953 to prepare state dict for ckpt
4749
+ DEBUG:megatron.training.checkpointing:rank: 5, takes 0.030666589736938477 to prepare state dict for ckpt
4750
+ DEBUG:megatron.training.checkpointing:rank: 7, takes 0.030682086944580078 to prepare state dict for ckpt
4751
+ DEBUG:megatron.training.checkpointing:rank: 14, takes 0.028278112411499023 to prepare state dict for ckpt
4752
+ DEBUG:megatron.training.checkpointing:rank: 3, takes 0.030695438385009766 to prepare state dict for ckpt
4753
+ DEBUG:megatron.training.checkpointing:rank: 8, takes 0.028383493423461914 to prepare state dict for ckpt
4754
+ DEBUG:megatron.training.checkpointing:rank: 1, takes 0.030734539031982422 to prepare state dict for ckpt
4755
+ DEBUG:megatron.training.checkpointing:rank: 0, takes 0.0310213565826416 to prepare state dict for ckpt
4756
+ DEBUG:megatron.training.checkpointing:rank: 2, takes 0.03133106231689453 to prepare state dict for ckpt
4757
+ DEBUG:megatron.training.checkpointing:rank: 4, takes 0.033275604248046875 to prepare state dict for ckpt
4758
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4759
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4760
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4761
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4762
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4763
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4764
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4765
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4766
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4767
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4768
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4769
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4770
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4771
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4772
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(212860928), 1), (np.int64(213909504), 2), (np.int64(205588480), 3)]
4773
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
4774
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(212860928), 1), (np.int64(213909504), 2), (np.int64(205588480), 3)]
4775
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(212860928), 1), (np.int64(213909504), 2), (np.int64(205588480), 3)]
4776
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(212860928), 1), (np.int64(213909504), 2), (np.int64(205588480), 3)]
4777
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(212860928), 1), (np.int64(213909504), 2), (np.int64(205588480), 3)]
4778
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(212860928), 1), (np.int64(213909504), 2), (np.int64(205588480), 3)]
4779
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(212860928), 1), (np.int64(213909504), 2), (np.int64(205588480), 3)]
4780
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(212860928), 1), (np.int64(213909504), 2), (np.int64(205588480), 3)]
4781
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(212860928), 1), (np.int64(213909504), 2), (np.int64(205588480), 3)]
4782
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(212860928), 1), (np.int64(213909504), 2), (np.int64(205588480), 3)]
4783
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(212860928), 1), (np.int64(213909504), 2), (np.int64(205588480), 3)]
4784
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(212860928), 1), (np.int64(213909504), 2), (np.int64(205588480), 3)]
4785
+ Running ctx_length=4096, TP_SIZE=4, CP_SIZE=4, BATCH_SIZE=16
4786
+ Cleaning up checkpoint directory: gpt-checkpoint
4787
+ --------------------------------
4788
+ CTX_LENGTH: 4096
4789
+ TP_SIZE: 4
4790
+ CP_SIZE: 4
4791
+ CHECKPOINT_PATH: gpt-checkpoint
4792
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
4793
+ --------------------------------
4794
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
4795
+ Cleaning up checkpoint directory: gpt-checkpoint
4796
+ --------------------------------
4797
+ CTX_LENGTH: 4096
4798
+ TP_SIZE: 4
4799
+ CP_SIZE: 4
4800
+ CHECKPOINT_PATH: gpt-checkpoint
4801
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
4802
+ --------------------------------
4803
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
attnserver.run_attnserver.slurm.sh.343224.err.log ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ + source /mnt/weka/home/hao.zhang/conda/miniconda/bin/activate
2
+ ++ _CONDA_ROOT=/mnt/weka/home/hao.zhang/conda/miniconda
3
+ ++ . /mnt/weka/home/hao.zhang/conda/miniconda/etc/profile.d/conda.sh
4
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
5
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
6
+ +++ export _CE_M=
7
+ +++ _CE_M=
8
+ +++ export _CE_CONDA=
9
+ +++ _CE_CONDA=
10
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
11
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
12
+ +++ '[' -z x ']'
13
+ ++ conda activate
14
+ ++ local cmd=activate
15
+ ++ case "$cmd" in
16
+ ++ __conda_activate activate
17
+ ++ '[' -n '' ']'
18
+ ++ local ask_conda
19
+ +++ PS1=
20
+ +++ __conda_exe shell.posix activate
21
+ +++ '[' -n '' ']'
22
+ +++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate
23
+ ++ ask_conda='unset _CE_M
24
+ unset _CE_CONDA
25
+ PS1='\''(base) '\''
26
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
27
+ export CONDA_SHLVL='\''1'\''
28
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
29
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
30
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
31
+ ++ eval 'unset _CE_M
32
+ unset _CE_CONDA
33
+ PS1='\''(base) '\''
34
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
35
+ export CONDA_SHLVL='\''1'\''
36
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
37
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
38
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
39
+ +++ unset _CE_M
40
+ +++ unset _CE_CONDA
41
+ +++ PS1='(base) '
42
+ +++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
43
+ +++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
44
+ +++ export CONDA_SHLVL=1
45
+ +++ CONDA_SHLVL=1
46
+ +++ export 'CONDA_PROMPT_MODIFIER=(base) '
47
+ +++ CONDA_PROMPT_MODIFIER='(base) '
48
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
49
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
50
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
51
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
52
+ ++ __conda_hashr
53
+ ++ '[' -n '' ']'
54
+ ++ '[' -n '' ']'
55
+ ++ hash -r
56
+ + conda activate junda-attnserver
57
+ + local cmd=activate
58
+ + case "$cmd" in
59
+ + __conda_activate activate junda-attnserver
60
+ + '[' -n '' ']'
61
+ + local ask_conda
62
+ ++ PS1='(base) '
63
+ ++ __conda_exe shell.posix activate junda-attnserver
64
+ ++ '[' -n '' ']'
65
+ ++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate junda-attnserver
66
+ + ask_conda='unset _CE_M
67
+ unset _CE_CONDA
68
+ PS1='\''(junda-attnserver) '\''
69
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
70
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
71
+ export CONDA_SHLVL='\''2'\''
72
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
73
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
74
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
75
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
76
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
77
+ + eval 'unset _CE_M
78
+ unset _CE_CONDA
79
+ PS1='\''(junda-attnserver) '\''
80
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
81
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
82
+ export CONDA_SHLVL='\''2'\''
83
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
84
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
85
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
86
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
87
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
88
+ ++ unset _CE_M
89
+ ++ unset _CE_CONDA
90
+ ++ PS1='(junda-attnserver) '
91
+ ++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
92
+ ++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
93
+ ++ export CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
94
+ ++ CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
95
+ ++ export CONDA_SHLVL=2
96
+ ++ CONDA_SHLVL=2
97
+ ++ export CONDA_DEFAULT_ENV=junda-attnserver
98
+ ++ CONDA_DEFAULT_ENV=junda-attnserver
99
+ ++ export 'CONDA_PROMPT_MODIFIER=(junda-attnserver) '
100
+ ++ CONDA_PROMPT_MODIFIER='(junda-attnserver) '
101
+ ++ export CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
102
+ ++ CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
103
+ ++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
104
+ ++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
105
+ ++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
106
+ ++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
107
+ + __conda_hashr
108
+ + '[' -n '' ']'
109
+ + '[' -n '' ']'
110
+ + hash -r
111
+ + export CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
112
+ + CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
113
+ + mkdir -p /mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
114
+ + export PROF_TP_SIZE=4
115
+ + PROF_TP_SIZE=4
116
+ + export PROF_CP_SIZE=4
117
+ + PROF_CP_SIZE=4
118
+ + export PROF_BS=32
119
+ + PROF_BS=32
120
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
121
+ + export PROF_CTX_LENGTH=1024
122
+ + PROF_CTX_LENGTH=1024
123
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp4.cp4.bs32.json'
124
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp4.cp4.bs32.json' ']'
125
+ + echo 'Running ctx_length=1024, TP_SIZE=4, CP_SIZE=4, BATCH_SIZE=32'
126
+ + srun bash ./attnserver.sh
127
+ + which python3
128
+ + which python3
129
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 0 --rdzv_id 343224 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-188:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
130
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 1 --rdzv_id 343224 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-188:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
131
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
132
+ and will be removed in future. Use torchrun.
133
+ Note that --use-env is set by default in torchrun.
134
+ If your script expects `--local-rank` argument to be set, please
135
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
136
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
137
+ further instructions
138
+
139
+ main()
140
+ W0621 21:34:52.697000 2098805 site-packages/torch/distributed/run.py:766]
141
+ W0621 21:34:52.697000 2098805 site-packages/torch/distributed/run.py:766] *****************************************
142
+ W0621 21:34:52.697000 2098805 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
143
+ W0621 21:34:52.697000 2098805 site-packages/torch/distributed/run.py:766] *****************************************
144
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
145
+ and will be removed in future. Use torchrun.
146
+ Note that --use-env is set by default in torchrun.
147
+ If your script expects `--local-rank` argument to be set, please
148
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
149
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
150
+ further instructions
151
+
152
+ main()
153
+ W0621 21:34:52.714000 753631 site-packages/torch/distributed/run.py:766]
154
+ W0621 21:34:52.714000 753631 site-packages/torch/distributed/run.py:766] *****************************************
155
+ W0621 21:34:52.714000 753631 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
156
+ W0621 21:34:52.714000 753631 site-packages/torch/distributed/run.py:766] *****************************************
attnserver.run_attnserver.slurm.sh.343224.out.log ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Running ctx_length=1024, TP_SIZE=4, CP_SIZE=4, BATCH_SIZE=32
2
+ Cleaning up checkpoint directory: gpt-checkpoint
3
+ Cleaning up checkpoint directory: gpt-checkpoint
4
+ --------------------------------
5
+ CTX_LENGTH: 1024
6
+ TP_SIZE: 4
7
+ CP_SIZE: 4
8
+ CHECKPOINT_PATH: gpt-checkpoint
9
+ --------------------------------
10
+ CTX_LENGTH: 1024
11
+ TP_SIZE: 4
12
+ CP_SIZE: 4
13
+ CHECKPOINT_PATH: gpt-checkpoint
14
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
15
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
16
+ --------------------------------
17
+ --------------------------------
18
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
19
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
attnserver.run_attnserver.slurm.sh.343225.err.log CHANGED
@@ -409,3 +409,82 @@ W0621 21:33:46.099000 2214638 site-packages/torch/distributed/run.py:766]
409
  W0621 21:33:46.099000 2214638 site-packages/torch/distributed/run.py:766] *****************************************
410
  W0621 21:33:46.099000 2214638 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
411
  W0621 21:33:46.099000 2214638 site-packages/torch/distributed/run.py:766] *****************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
409
  W0621 21:33:46.099000 2214638 site-packages/torch/distributed/run.py:766] *****************************************
410
  W0621 21:33:46.099000 2214638 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
411
  W0621 21:33:46.099000 2214638 site-packages/torch/distributed/run.py:766] *****************************************
412
+ [rank6]:[W621 21:34:07.487829542 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
413
+ [rank7]:[W621 21:34:07.487835309 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
414
+ [rank2]:[W621 21:34:07.487855923 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
415
+ [rank3]:[W621 21:34:07.487926048 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
416
+ [rank1]:[W621 21:34:07.495968121 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
417
+ [rank5]:[W621 21:34:07.496212111 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
418
+ [rank4]:[W621 21:34:07.496540265 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
419
+ [rank0]:[W621 21:34:08.635239263 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
420
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
421
+ warnings.warn(
422
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
423
+ warnings.warn(
424
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
425
+ warnings.warn(
426
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
427
+ warnings.warn(
428
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
429
+ warnings.warn(
430
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
431
+ warnings.warn(
432
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
433
+ warnings.warn(
434
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
435
+ warnings.warn(
436
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
437
+ warnings.warn(
438
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
439
+ warnings.warn(
440
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
441
+ warnings.warn(
442
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
443
+ warnings.warn(
444
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
445
+ warnings.warn(
446
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
447
+ warnings.warn(
448
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
449
+ warnings.warn(
450
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
451
+ warnings.warn(
452
+ [rank3]:[W621 21:34:39.700737341 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
453
+ [rank2]:[W621 21:34:39.712462994 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
454
+ [rank0]:[W621 21:34:39.718188712 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
455
+ [rank1]:[W621 21:34:39.940108258 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
456
+ [rank5]:[W621 21:34:39.147737758 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
457
+ [rank7]:[W621 21:34:39.176462496 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
458
+ [rank6]:[W621 21:34:39.181024070 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
459
+ [rank4]:[W621 21:34:39.294151165 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
460
+ + set +x
461
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
462
+ + export PROF_CTX_LENGTH=12288
463
+ + PROF_CTX_LENGTH=12288
464
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L12288*tp4.cp2.bs1.json'
465
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L12288*tp4.cp2.bs1.json' ']'
466
+ + echo 'Running ctx_length=12288, TP_SIZE=4, CP_SIZE=2, BATCH_SIZE=1'
467
+ + srun bash ./attnserver.sh
468
+ + which python3
469
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343225 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-768:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 2 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 12288 --max-position-embeddings 12288 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
470
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
471
+ and will be removed in future. Use torchrun.
472
+ Note that --use-env is set by default in torchrun.
473
+ If your script expects `--local-rank` argument to be set, please
474
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
475
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
476
+ further instructions
477
+
478
+ main()
479
+ W0621 21:34:45.781000 2217839 site-packages/torch/distributed/run.py:766]
480
+ W0621 21:34:45.781000 2217839 site-packages/torch/distributed/run.py:766] *****************************************
481
+ W0621 21:34:45.781000 2217839 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
482
+ W0621 21:34:45.781000 2217839 site-packages/torch/distributed/run.py:766] *****************************************
483
+ [rank4]:[W621 21:35:08.677022510 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
484
+ [rank1]:[W621 21:35:08.680781221 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
485
+ [rank5]:[W621 21:35:08.680784263 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
486
+ [rank6]:[W621 21:35:08.681997194 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
487
+ [rank2]:[W621 21:35:08.685269567 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
488
+ [rank7]:[W621 21:35:08.687936052 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
489
+ [rank3]:[W621 21:35:08.687956111 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
490
+ [rank0]:[W621 21:35:08.817375320 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
attnserver.run_attnserver.slurm.sh.343225.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343226.err.log CHANGED
@@ -179,3 +179,95 @@ W0621 21:33:13.100000 1966606 site-packages/torch/distributed/run.py:766] ******
179
  warnings.warn(
180
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
181
  warnings.warn(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
  warnings.warn(
180
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
181
  warnings.warn(
182
+ [rank2]:[W621 21:34:11.104867952 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
183
+ [rank3]:[W621 21:34:11.137815168 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
184
+ [rank0]:[W621 21:34:11.205114054 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
185
+ [rank1]:[W621 21:34:11.265262807 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
186
+ [rank7]:[W621 21:34:11.609105248 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
187
+ [rank5]:[W621 21:34:11.628118305 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
188
+ [rank4]:[W621 21:34:11.628580306 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
189
+ [rank6]:[W621 21:34:11.810632658 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
190
+ + set +x
191
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
192
+ + export PROF_CTX_LENGTH=2048
193
+ + PROF_CTX_LENGTH=2048
194
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L2048*tp4.cp2.bs2.json'
195
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L2048*tp4.cp2.bs2.json' ']'
196
+ + echo 'Running ctx_length=2048, TP_SIZE=4, CP_SIZE=2, BATCH_SIZE=2'
197
+ + srun bash ./attnserver.sh
198
+ + which python3
199
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343226 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-896:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 2 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 2048 --max-position-embeddings 2048 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
200
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
201
+ and will be removed in future. Use torchrun.
202
+ Note that --use-env is set by default in torchrun.
203
+ If your script expects `--local-rank` argument to be set, please
204
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
205
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
206
+ further instructions
207
+
208
+ main()
209
+ W0621 21:34:17.950000 1970094 site-packages/torch/distributed/run.py:766]
210
+ W0621 21:34:17.950000 1970094 site-packages/torch/distributed/run.py:766] *****************************************
211
+ W0621 21:34:17.950000 1970094 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
212
+ W0621 21:34:17.950000 1970094 site-packages/torch/distributed/run.py:766] *****************************************
213
+ [rank6]:[W621 21:34:41.641514602 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
214
+ [rank2]:[W621 21:34:41.641516382 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
215
+ [rank5]:[W621 21:34:41.657758021 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
216
+ [rank1]:[W621 21:34:41.657891541 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
217
+ [rank7]:[W621 21:34:41.659904559 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
218
+ [rank4]:[W621 21:34:41.660089120 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
219
+ [rank3]:[W621 21:34:41.661630568 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
220
+ [rank0]:[W621 21:34:41.817048114 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
221
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
222
+ warnings.warn(
223
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
224
+ warnings.warn(
225
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
226
+ warnings.warn(
227
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
228
+ warnings.warn(
229
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
230
+ warnings.warn(
231
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
232
+ warnings.warn(
233
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
234
+ warnings.warn(
235
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
236
+ warnings.warn(
237
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
238
+ warnings.warn(
239
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
240
+ warnings.warn(
241
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
242
+ warnings.warn(
243
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
244
+ warnings.warn(
245
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
246
+ warnings.warn(
247
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
248
+ warnings.warn(
249
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
250
+ warnings.warn(
251
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
252
+ warnings.warn(
253
+ [rank0]: Traceback (most recent call last):
254
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
255
+ [rank0]: pretrain(
256
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
257
+ [rank0]: save_checkpoint(
258
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
259
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
260
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
261
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 386, in save
262
+ [rank0]: common_strategy.save_common(state_dict, checkpoint_dir)
263
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/common.py", line 48, in save_common
264
+ [rank0]: torch.save(common_state_dict, path)
265
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 964, in save
266
+ [rank0]: with _open_zipfile_writer(f) as opened_zipfile:
267
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^
268
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 828, in _open_zipfile_writer
269
+ [rank0]: return container(name_or_buffer)
270
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^
271
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 792, in __init__
272
+ [rank0]: torch._C.PyTorchFileWriter(
273
+ [rank0]: RuntimeError: Parent directory gpt-checkpoint/iter_0000010 does not exist.
attnserver.run_attnserver.slurm.sh.343226.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343227.err.log ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ + source /mnt/weka/home/hao.zhang/conda/miniconda/bin/activate
2
+ ++ _CONDA_ROOT=/mnt/weka/home/hao.zhang/conda/miniconda
3
+ ++ . /mnt/weka/home/hao.zhang/conda/miniconda/etc/profile.d/conda.sh
4
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
5
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
6
+ +++ export _CE_M=
7
+ +++ _CE_M=
8
+ +++ export _CE_CONDA=
9
+ +++ _CE_CONDA=
10
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
11
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
12
+ +++ '[' -z x ']'
13
+ ++ conda activate
14
+ ++ local cmd=activate
15
+ ++ case "$cmd" in
16
+ ++ __conda_activate activate
17
+ ++ '[' -n '' ']'
18
+ ++ local ask_conda
19
+ +++ PS1=
20
+ +++ __conda_exe shell.posix activate
21
+ +++ '[' -n '' ']'
22
+ +++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate
23
+ ++ ask_conda='unset _CE_M
24
+ unset _CE_CONDA
25
+ PS1='\''(base) '\''
26
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
27
+ export CONDA_SHLVL='\''1'\''
28
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
29
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
30
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
31
+ ++ eval 'unset _CE_M
32
+ unset _CE_CONDA
33
+ PS1='\''(base) '\''
34
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
35
+ export CONDA_SHLVL='\''1'\''
36
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
37
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
38
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
39
+ +++ unset _CE_M
40
+ +++ unset _CE_CONDA
41
+ +++ PS1='(base) '
42
+ +++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
43
+ +++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
44
+ +++ export CONDA_SHLVL=1
45
+ +++ CONDA_SHLVL=1
46
+ +++ export 'CONDA_PROMPT_MODIFIER=(base) '
47
+ +++ CONDA_PROMPT_MODIFIER='(base) '
48
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
49
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
50
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
51
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
52
+ ++ __conda_hashr
53
+ ++ '[' -n '' ']'
54
+ ++ '[' -n '' ']'
55
+ ++ hash -r
56
+ + conda activate junda-attnserver
57
+ + local cmd=activate
58
+ + case "$cmd" in
59
+ + __conda_activate activate junda-attnserver
60
+ + '[' -n '' ']'
61
+ + local ask_conda
62
+ ++ PS1='(base) '
63
+ ++ __conda_exe shell.posix activate junda-attnserver
64
+ ++ '[' -n '' ']'
65
+ ++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate junda-attnserver
66
+ + ask_conda='unset _CE_M
67
+ unset _CE_CONDA
68
+ PS1='\''(junda-attnserver) '\''
69
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
70
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
71
+ export CONDA_SHLVL='\''2'\''
72
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
73
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
74
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
75
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
76
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
77
+ + eval 'unset _CE_M
78
+ unset _CE_CONDA
79
+ PS1='\''(junda-attnserver) '\''
80
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
81
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
82
+ export CONDA_SHLVL='\''2'\''
83
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
84
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
85
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
86
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
87
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
88
+ ++ unset _CE_M
89
+ ++ unset _CE_CONDA
90
+ ++ PS1='(junda-attnserver) '
91
+ ++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
92
+ ++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
93
+ ++ export CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
94
+ ++ CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
95
+ ++ export CONDA_SHLVL=2
96
+ ++ CONDA_SHLVL=2
97
+ ++ export CONDA_DEFAULT_ENV=junda-attnserver
98
+ ++ CONDA_DEFAULT_ENV=junda-attnserver
99
+ ++ export 'CONDA_PROMPT_MODIFIER=(junda-attnserver) '
100
+ ++ CONDA_PROMPT_MODIFIER='(junda-attnserver) '
101
+ ++ export CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
102
+ ++ CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
103
+ ++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
104
+ ++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
105
+ ++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
106
+ ++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
107
+ + __conda_hashr
108
+ + '[' -n '' ']'
109
+ + '[' -n '' ']'
110
+ + hash -r
111
+ + export CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
112
+ + CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
113
+ + mkdir -p /mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
114
+ + export PROF_TP_SIZE=4
115
+ + PROF_TP_SIZE=4
116
+ + export PROF_CP_SIZE=2
117
+ + PROF_CP_SIZE=2
118
+ + export PROF_BS=4
119
+ + PROF_BS=4
120
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
121
+ + export PROF_CTX_LENGTH=1024
122
+ + PROF_CTX_LENGTH=1024
123
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp4.cp2.bs4.json'
124
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp4.cp2.bs4.json' ']'
125
+ + echo 'Running ctx_length=1024, TP_SIZE=4, CP_SIZE=2, BATCH_SIZE=4'
126
+ + srun bash ./attnserver.sh
127
+ + which python3
128
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343227 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-791:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 2 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
129
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
130
+ and will be removed in future. Use torchrun.
131
+ Note that --use-env is set by default in torchrun.
132
+ If your script expects `--local-rank` argument to be set, please
133
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
134
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
135
+ further instructions
136
+
137
+ main()
138
+ W0621 21:34:48.293000 2322929 site-packages/torch/distributed/run.py:766]
139
+ W0621 21:34:48.293000 2322929 site-packages/torch/distributed/run.py:766] *****************************************
140
+ W0621 21:34:48.293000 2322929 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
141
+ W0621 21:34:48.293000 2322929 site-packages/torch/distributed/run.py:766] *****************************************
attnserver.run_attnserver.slurm.sh.343227.out.log ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ Running ctx_length=1024, TP_SIZE=4, CP_SIZE=2, BATCH_SIZE=4
2
+ Cleaning up checkpoint directory: gpt-checkpoint
3
+ --------------------------------
4
+ CTX_LENGTH: 1024
5
+ TP_SIZE: 4
6
+ CP_SIZE: 2
7
+ CHECKPOINT_PATH: gpt-checkpoint
8
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
9
+ --------------------------------
10
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
attnserver.run_attnserver.slurm.sh.343228.err.log ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ + source /mnt/weka/home/hao.zhang/conda/miniconda/bin/activate
2
+ ++ _CONDA_ROOT=/mnt/weka/home/hao.zhang/conda/miniconda
3
+ ++ . /mnt/weka/home/hao.zhang/conda/miniconda/etc/profile.d/conda.sh
4
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
5
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
6
+ +++ export _CE_M=
7
+ +++ _CE_M=
8
+ +++ export _CE_CONDA=
9
+ +++ _CE_CONDA=
10
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
11
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
12
+ +++ '[' -z x ']'
13
+ ++ conda activate
14
+ ++ local cmd=activate
15
+ ++ case "$cmd" in
16
+ ++ __conda_activate activate
17
+ ++ '[' -n '' ']'
18
+ ++ local ask_conda
19
+ +++ PS1=
20
+ +++ __conda_exe shell.posix activate
21
+ +++ '[' -n '' ']'
22
+ +++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate
23
+ ++ ask_conda='unset _CE_M
24
+ unset _CE_CONDA
25
+ PS1='\''(base) '\''
26
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
27
+ export CONDA_SHLVL='\''1'\''
28
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
29
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
30
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
31
+ ++ eval 'unset _CE_M
32
+ unset _CE_CONDA
33
+ PS1='\''(base) '\''
34
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
35
+ export CONDA_SHLVL='\''1'\''
36
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
37
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
38
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
39
+ +++ unset _CE_M
40
+ +++ unset _CE_CONDA
41
+ +++ PS1='(base) '
42
+ +++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
43
+ +++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
44
+ +++ export CONDA_SHLVL=1
45
+ +++ CONDA_SHLVL=1
46
+ +++ export 'CONDA_PROMPT_MODIFIER=(base) '
47
+ +++ CONDA_PROMPT_MODIFIER='(base) '
48
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
49
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
50
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
51
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
52
+ ++ __conda_hashr
53
+ ++ '[' -n '' ']'
54
+ ++ '[' -n '' ']'
55
+ ++ hash -r
56
+ + conda activate junda-attnserver
57
+ + local cmd=activate
58
+ + case "$cmd" in
59
+ + __conda_activate activate junda-attnserver
60
+ + '[' -n '' ']'
61
+ + local ask_conda
62
+ ++ PS1='(base) '
63
+ ++ __conda_exe shell.posix activate junda-attnserver
64
+ ++ '[' -n '' ']'
65
+ ++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate junda-attnserver
66
+ + ask_conda='unset _CE_M
67
+ unset _CE_CONDA
68
+ PS1='\''(junda-attnserver) '\''
69
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
70
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
71
+ export CONDA_SHLVL='\''2'\''
72
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
73
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
74
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
75
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
76
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
77
+ + eval 'unset _CE_M
78
+ unset _CE_CONDA
79
+ PS1='\''(junda-attnserver) '\''
80
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
81
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
82
+ export CONDA_SHLVL='\''2'\''
83
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
84
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
85
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
86
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
87
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
88
+ ++ unset _CE_M
89
+ ++ unset _CE_CONDA
90
+ ++ PS1='(junda-attnserver) '
91
+ ++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
92
+ ++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
93
+ ++ export CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
94
+ ++ CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
95
+ ++ export CONDA_SHLVL=2
96
+ ++ CONDA_SHLVL=2
97
+ ++ export CONDA_DEFAULT_ENV=junda-attnserver
98
+ ++ CONDA_DEFAULT_ENV=junda-attnserver
99
+ ++ export 'CONDA_PROMPT_MODIFIER=(junda-attnserver) '
100
+ ++ CONDA_PROMPT_MODIFIER='(junda-attnserver) '
101
+ ++ export CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
102
+ ++ CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
103
+ ++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
104
+ ++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
105
+ ++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
106
+ ++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
107
+ + __conda_hashr
108
+ + '[' -n '' ']'
109
+ + '[' -n '' ']'
110
+ + hash -r
111
+ + export CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
112
+ + CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
113
+ + mkdir -p /mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
114
+ + export PROF_TP_SIZE=4
115
+ + PROF_TP_SIZE=4
116
+ + export PROF_CP_SIZE=2
117
+ + PROF_CP_SIZE=2
118
+ + export PROF_BS=8
119
+ + PROF_BS=8
120
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
121
+ + export PROF_CTX_LENGTH=1024
122
+ + PROF_CTX_LENGTH=1024
123
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp4.cp2.bs8.json'
124
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp4.cp2.bs8.json' ']'
125
+ + echo 'Running ctx_length=1024, TP_SIZE=4, CP_SIZE=2, BATCH_SIZE=8'
126
+ + srun bash ./attnserver.sh
127
+ + which python3
128
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343228 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-702:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 2 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
129
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
130
+ and will be removed in future. Use torchrun.
131
+ Note that --use-env is set by default in torchrun.
132
+ If your script expects `--local-rank` argument to be set, please
133
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
134
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
135
+ further instructions
136
+
137
+ main()
138
+ W0621 21:34:47.144000 2011677 site-packages/torch/distributed/run.py:766]
139
+ W0621 21:34:47.144000 2011677 site-packages/torch/distributed/run.py:766] *****************************************
140
+ W0621 21:34:47.144000 2011677 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
141
+ W0621 21:34:47.144000 2011677 site-packages/torch/distributed/run.py:766] *****************************************
142
+ [rank4]:[W621 21:35:08.948474453 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
143
+ [rank7]:[W621 21:35:08.969019811 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
144
+ [rank3]:[W621 21:35:08.969037473 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
145
+ [rank1]:[W621 21:35:08.972937737 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
146
+ [rank6]:[W621 21:35:08.972966899 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
147
+ [rank2]:[W621 21:35:08.972995451 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
148
+ [rank5]:[W621 21:35:08.973070968 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
149
+ [rank0]:[W621 21:35:08.090706737 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
attnserver.run_attnserver.slurm.sh.343228.out.log ADDED
@@ -0,0 +1,536 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Running ctx_length=1024, TP_SIZE=4, CP_SIZE=2, BATCH_SIZE=8
2
+ Cleaning up checkpoint directory: gpt-checkpoint
3
+ --------------------------------
4
+ CTX_LENGTH: 1024
5
+ TP_SIZE: 4
6
+ CP_SIZE: 2
7
+ CHECKPOINT_PATH: gpt-checkpoint
8
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
9
+ --------------------------------
10
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
11
+ using world size: 8, data-parallel size: 1, context-parallel size: 2, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 4, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0
12
+ Number of virtual stages per pipeline stage: None
13
+ WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used
14
+ using torch.float16 for parameters ...
15
+ ------------------------ arguments ------------------------
16
+ account_for_embedding_in_pipeline_split ......... False
17
+ account_for_loss_in_pipeline_split .............. False
18
+ accumulate_allreduce_grads_in_fp32 .............. False
19
+ adam_beta1 ...................................... 0.9
20
+ adam_beta2 ...................................... 0.999
21
+ adam_eps ........................................ 1e-08
22
+ add_bias_linear ................................. True
23
+ add_position_embedding .......................... True
24
+ add_qkv_bias .................................... True
25
+ adlr_autoresume ................................. False
26
+ adlr_autoresume_interval ........................ 1000
27
+ align_grad_reduce ............................... True
28
+ align_param_gather .............................. False
29
+ app_tag_run_name ................................ None
30
+ app_tag_run_version ............................. 0.0.0
31
+ apply_layernorm_1p .............................. False
32
+ apply_query_key_layer_scaling ................... False
33
+ apply_residual_connection_post_layernorm ........ False
34
+ apply_rope_fusion ............................... False
35
+ async_save ...................................... None
36
+ async_tensor_model_parallel_allreduce ........... True
37
+ attention_backend ............................... AttnBackend.auto
38
+ attention_dropout ............................... 0.1
39
+ attention_softmax_in_fp32 ....................... False
40
+ auto_detect_ckpt_format ......................... False
41
+ barrier_with_L1_time ............................ True
42
+ bert_binary_head ................................ True
43
+ bert_embedder_type .............................. megatron
44
+ bert_load ....................................... None
45
+ bf16 ............................................ False
46
+ bias_dropout_fusion ............................. True
47
+ bias_gelu_fusion ................................ True
48
+ bias_swiglu_fusion .............................. True
49
+ biencoder_projection_dim ........................ 0
50
+ biencoder_shared_query_context_model ............ False
51
+ block_data_path ................................. None
52
+ calc_ft_timeouts ................................ False
53
+ calculate_per_token_loss ........................ False
54
+ check_for_large_grads ........................... False
55
+ check_for_nan_in_loss_and_grad .................. False
56
+ check_for_spiky_loss ............................ False
57
+ check_weight_hash_across_dp_replicas_interval ... None
58
+ ckpt_assume_constant_structure .................. False
59
+ ckpt_convert_format ............................. None
60
+ ckpt_convert_save ............................... None
61
+ ckpt_convert_update_legacy_dist_opt_format ...... False
62
+ ckpt_format ..................................... torch_dist
63
+ ckpt_fully_parallel_load ........................ False
64
+ ckpt_fully_parallel_save ........................ True
65
+ ckpt_fully_parallel_save_deprecated ............. False
66
+ ckpt_step ....................................... None
67
+ classes_fraction ................................ 1.0
68
+ clip_grad ....................................... 1.0
69
+ clone_scatter_output_in_embedding ............... True
70
+ config_logger_dir ...............................
71
+ consumed_train_samples .......................... 0
72
+ consumed_valid_samples .......................... 0
73
+ context_parallel_size ........................... 2
74
+ cp_comm_type .................................... ['p2p']
75
+ create_attention_mask_in_dataloader ............. True
76
+ cross_entropy_fusion_impl ....................... native
77
+ cross_entropy_loss_fusion ....................... False
78
+ cuda_graph_scope ................................ full
79
+ cuda_graph_warmup_steps ......................... 3
80
+ data_args_path .................................. None
81
+ data_cache_path ................................. None
82
+ data_parallel_random_init ....................... False
83
+ data_parallel_sharding_strategy ................. no_shard
84
+ data_parallel_size .............................. 1
85
+ data_path ....................................... None
86
+ data_per_class_fraction ......................... 1.0
87
+ data_sharding ................................... True
88
+ dataloader_type ................................. single
89
+ ddp_average_in_collective ....................... False
90
+ ddp_bucket_size ................................. None
91
+ ddp_num_buckets ................................. None
92
+ ddp_pad_buckets_for_high_nccl_busbw ............. False
93
+ decoder_first_pipeline_num_layers ............... None
94
+ decoder_last_pipeline_num_layers ................ None
95
+ decoder_num_layers .............................. None
96
+ decoder_seq_length .............................. None
97
+ decoupled_lr .................................... None
98
+ decoupled_min_lr ................................ None
99
+ decrease_batch_size_if_needed ................... False
100
+ defer_embedding_wgrad_compute ................... False
101
+ deprecated_use_mcore_models ..................... False
102
+ deterministic_mode .............................. False
103
+ dino_bottleneck_size ............................ 256
104
+ dino_freeze_last_layer .......................... 1
105
+ dino_head_hidden_size ........................... 2048
106
+ dino_local_crops_number ......................... 10
107
+ dino_local_img_size ............................. 96
108
+ dino_norm_last_layer ............................ False
109
+ dino_teacher_temp ............................... 0.07
110
+ dino_warmup_teacher_temp ........................ 0.04
111
+ dino_warmup_teacher_temp_epochs ................. 30
112
+ disable_bf16_reduced_precision_matmul ........... False
113
+ disable_mamba_mem_eff_path ...................... False
114
+ disable_straggler_on_startup .................... False
115
+ dist_ckpt_format_deprecated ..................... None
116
+ dist_ckpt_strictness ............................ assume_ok_unexpected
117
+ distribute_saved_activations .................... False
118
+ distributed_backend ............................. nccl
119
+ distributed_timeout_minutes ..................... 10
120
+ embedding_path .................................. None
121
+ empty_unused_memory_level ....................... 0
122
+ enable_cuda_graph ............................... False
123
+ enable_ft_package ............................... False
124
+ enable_gloo_process_groups ...................... True
125
+ enable_msc ...................................... True
126
+ enable_one_logger ............................... True
127
+ encoder_num_layers .............................. 2
128
+ encoder_pipeline_model_parallel_size ............ 0
129
+ encoder_seq_length .............................. 1024
130
+ encoder_tensor_model_parallel_size .............. 0
131
+ end_weight_decay ................................ 0.1
132
+ eod_mask_loss ................................... False
133
+ error_injection_rate ............................ 0
134
+ error_injection_type ............................ transient_error
135
+ eval_interval ................................... 16
136
+ eval_iters ...................................... 1
137
+ evidence_data_path .............................. None
138
+ exit_duration_in_mins ........................... None
139
+ exit_interval ................................... None
140
+ exit_on_missing_checkpoint ...................... False
141
+ exit_signal_handler ............................. False
142
+ exp_avg_dtype ................................... torch.float32
143
+ exp_avg_sq_dtype ................................ torch.float32
144
+ expert_model_parallel_size ...................... 1
145
+ expert_tensor_parallel_size ..................... 4
146
+ external_cuda_graph ............................. False
147
+ ffn_hidden_size ................................. 16384
148
+ finetune ........................................ False
149
+ first_last_layers_bf16 .......................... False
150
+ flash_decode .................................... False
151
+ fp16 ............................................ True
152
+ fp16_lm_cross_entropy ........................... False
153
+ fp32_residual_connection ........................ False
154
+ fp8 ............................................. None
155
+ fp8_amax_compute_algo ........................... most_recent
156
+ fp8_amax_history_len ............................ 1
157
+ fp8_interval .................................... 1
158
+ fp8_margin ...................................... 0
159
+ fp8_param_gather ................................ False
160
+ fp8_recipe ...................................... delayed
161
+ fp8_wgrad ....................................... True
162
+ fsdp_double_buffer .............................. False
163
+ global_batch_size ............................... 1
164
+ grad_reduce_in_bf16 ............................. False
165
+ gradient_accumulation_fusion .................... True
166
+ gradient_reduce_div_fusion ...................... True
167
+ group_query_attention ........................... True
168
+ head_lr_mult .................................... 1.0
169
+ heterogeneous_layers_config_encoded_json ........ None
170
+ heterogeneous_layers_config_path ................ None
171
+ hidden_dropout .................................. 0.1
172
+ hidden_size ..................................... 4096
173
+ hierarchical_context_parallel_sizes ............. None
174
+ high_priority_stream_groups ..................... []
175
+ hybrid_attention_ratio .......................... 0.0
176
+ hybrid_mlp_ratio ................................ 0.0
177
+ hybrid_override_pattern ......................... None
178
+ hysteresis ...................................... 2
179
+ ict_head_size ................................... None
180
+ ict_load ........................................ None
181
+ img_h ........................................... 224
182
+ img_w ........................................... 224
183
+ indexer_batch_size .............................. 128
184
+ indexer_log_interval ............................ 1000
185
+ inference_batch_times_seqlen_threshold .......... -1
186
+ inference_dynamic_batching ...................... False
187
+ inference_dynamic_batching_buffer_guaranteed_fraction 0.2
188
+ inference_dynamic_batching_buffer_overflow_factor None
189
+ inference_dynamic_batching_buffer_size_gb ....... 40.0
190
+ inference_dynamic_batching_chunk_size ........... 256
191
+ inference_dynamic_batching_max_requests_override None
192
+ inference_dynamic_batching_max_tokens_override .. None
193
+ inference_max_batch_size ........................ 8
194
+ inference_max_seq_length ........................ 2560
195
+ inference_rng_tracker ........................... False
196
+ init_method_std ................................. 0.02
197
+ init_method_xavier_uniform ...................... False
198
+ init_model_with_meta_device ..................... False
199
+ initial_loss_scale .............................. 4294967296
200
+ inprocess_active_world_size ..................... 8
201
+ inprocess_barrier_timeout ....................... 120
202
+ inprocess_completion_timeout .................... 120
203
+ inprocess_empty_cuda_cache ...................... False
204
+ inprocess_granularity ........................... node
205
+ inprocess_hard_timeout .......................... 90
206
+ inprocess_heartbeat_interval .................... 30
207
+ inprocess_heartbeat_timeout ..................... 60
208
+ inprocess_last_call_wait ........................ 1
209
+ inprocess_max_iterations ........................ None
210
+ inprocess_monitor_process_interval .............. 1.0
211
+ inprocess_monitor_thread_interval ............... 1.0
212
+ inprocess_progress_watchdog_interval ............ 1.0
213
+ inprocess_restart ............................... False
214
+ inprocess_soft_timeout .......................... 60
215
+ inprocess_termination_grace_time ................ 1
216
+ is_hybrid_model ................................. False
217
+ iter_per_epoch .................................. 1250
218
+ iterations_to_skip .............................. []
219
+ keep_fp8_transpose_cache_when_using_custom_fsdp . False
220
+ kv_channels ..................................... 64
221
+ kv_lora_rank .................................... 32
222
+ lazy_mpu_init ................................... None
223
+ load ............................................ gpt-checkpoint
224
+ load_model_opt_format ........................... False
225
+ local_rank ...................................... 0
226
+ log_interval .................................... 1
227
+ log_loss_scale_to_tensorboard ................... True
228
+ log_memory_to_tensorboard ....................... False
229
+ log_num_zeros_in_grad ........................... False
230
+ log_params_norm ................................. False
231
+ log_progress .................................... False
232
+ log_straggler ................................... False
233
+ log_throughput .................................. False
234
+ log_timers_to_tensorboard ....................... False
235
+ log_validation_ppl_to_tensorboard ............... False
236
+ log_world_size_to_tensorboard ................... False
237
+ logging_level ................................... 0
238
+ loss_scale ...................................... None
239
+ loss_scale_window ............................... 1000
240
+ lr .............................................. 0.0005
241
+ lr_decay_iters .................................. 150000
242
+ lr_decay_samples ................................ None
243
+ lr_decay_style .................................. cosine
244
+ lr_warmup_fraction .............................. None
245
+ lr_warmup_init .................................. 0.0
246
+ lr_warmup_iters ................................. 2
247
+ lr_warmup_samples ............................... 0
248
+ lr_wsd_decay_iters .............................. None
249
+ lr_wsd_decay_samples ............................ None
250
+ lr_wsd_decay_style .............................. exponential
251
+ main_grads_dtype ................................ torch.float32
252
+ main_params_dtype ............................... torch.float32
253
+ make_vocab_size_divisible_by .................... 128
254
+ mamba_head_dim .................................. 64
255
+ mamba_num_groups ................................ 8
256
+ mamba_num_heads ................................. None
257
+ mamba_state_dim ................................. 128
258
+ manual_gc ....................................... False
259
+ manual_gc_eval .................................. True
260
+ manual_gc_interval .............................. 0
261
+ mask_factor ..................................... 1.0
262
+ mask_prob ....................................... 0.15
263
+ mask_type ....................................... random
264
+ masked_softmax_fusion ........................... True
265
+ max_position_embeddings ......................... 1024
266
+ max_tokens_to_oom ............................... 12000
267
+ memory_snapshot_path ............................ snapshot.pickle
268
+ merge_file ...................................... merges.txt
269
+ micro_batch_size ................................ 1
270
+ microbatch_group_size_per_vp_stage .............. None
271
+ mid_level_dataset_surplus ....................... 0.005
272
+ min_loss_scale .................................. 1.0
273
+ min_lr .......................................... 0.0
274
+ mlp_chunks_for_prefill .......................... 1
275
+ mmap_bin_files .................................. True
276
+ mock_data ....................................... True
277
+ moe_apply_probs_on_input ........................ False
278
+ moe_aux_loss_coeff .............................. 0.0
279
+ moe_enable_deepep ............................... False
280
+ moe_expert_capacity_factor ...................... None
281
+ moe_extended_tp ................................. False
282
+ moe_ffn_hidden_size ............................. None
283
+ moe_grouped_gemm ................................ False
284
+ moe_input_jitter_eps ............................ None
285
+ moe_layer_freq .................................. 1
286
+ moe_layer_recompute ............................. False
287
+ moe_pad_expert_input_to_capacity ................ False
288
+ moe_per_layer_logging ........................... False
289
+ moe_permute_fusion .............................. False
290
+ moe_router_bias_update_rate ..................... 0.001
291
+ moe_router_dtype ................................ None
292
+ moe_router_enable_expert_bias ................... False
293
+ moe_router_force_load_balancing ................. False
294
+ moe_router_group_topk ........................... None
295
+ moe_router_load_balancing_type .................. aux_loss
296
+ moe_router_num_groups ........................... None
297
+ moe_router_padding_for_fp8 ...................... False
298
+ moe_router_pre_softmax .......................... False
299
+ moe_router_score_function ....................... softmax
300
+ moe_router_topk ................................. 2
301
+ moe_router_topk_scaling_factor .................. None
302
+ moe_shared_expert_intermediate_size ............. None
303
+ moe_shared_expert_overlap ....................... False
304
+ moe_token_dispatcher_type ....................... allgather
305
+ moe_token_drop_policy ........................... probs
306
+ moe_use_legacy_grouped_gemm ..................... False
307
+ moe_use_upcycling ............................... False
308
+ moe_z_loss_coeff ................................ None
309
+ mrope_section ................................... None
310
+ mscale .......................................... 1.0
311
+ mscale_all_dim .................................. 1.0
312
+ mtp_loss_scaling_factor ......................... 0.1
313
+ mtp_num_layers .................................. None
314
+ multi_latent_attention .......................... False
315
+ nccl_all_reduce_for_prefill ..................... False
316
+ nccl_communicator_config_path ................... None
317
+ nccl_ub ......................................... False
318
+ no_load_optim ................................... None
319
+ no_load_rng ..................................... None
320
+ no_persist_layer_norm ........................... False
321
+ no_rope_freq .................................... None
322
+ no_save_optim ................................... None
323
+ no_save_rng ..................................... None
324
+ non_persistent_ckpt_type ........................ None
325
+ non_persistent_global_ckpt_dir .................. None
326
+ non_persistent_local_ckpt_algo .................. fully_parallel
327
+ non_persistent_local_ckpt_dir ................... None
328
+ non_persistent_save_interval .................... None
329
+ norm_epsilon .................................... 1e-05
330
+ normalization ................................... LayerNorm
331
+ num_attention_heads ............................. 64
332
+ num_channels .................................... 3
333
+ num_classes ..................................... 1000
334
+ num_dataset_builder_threads ..................... 1
335
+ num_distributed_optimizer_instances ............. 1
336
+ num_experts ..................................... None
337
+ num_layers ...................................... 2
338
+ num_layers_at_end_in_bf16 ....................... 1
339
+ num_layers_at_start_in_bf16 ..................... 1
340
+ num_layers_per_virtual_pipeline_stage ........... None
341
+ num_query_groups ................................ 16
342
+ num_virtual_stages_per_pipeline_rank ............ None
343
+ num_workers ..................................... 2
344
+ object_storage_cache_path ....................... None
345
+ one_logger_async ................................ False
346
+ one_logger_project .............................. megatron-lm
347
+ one_logger_run_name ............................. None
348
+ onnx_safe ....................................... None
349
+ openai_gelu ..................................... False
350
+ optimizer ....................................... adam
351
+ optimizer_cpu_offload ........................... False
352
+ optimizer_offload_fraction ...................... 1.0
353
+ output_bert_embeddings .......................... False
354
+ overlap_cpu_optimizer_d2h_h2d ................... False
355
+ overlap_grad_reduce ............................. False
356
+ overlap_p2p_comm ................................ False
357
+ overlap_p2p_comm_warmup_flush ................... False
358
+ overlap_param_gather ............................ False
359
+ overlap_param_gather_with_optimizer_step ........ False
360
+ override_opt_param_scheduler .................... False
361
+ params_dtype .................................... torch.float16
362
+ patch_dim ....................................... 16
363
+ per_split_data_args_path ........................ None
364
+ perform_initialization .......................... True
365
+ pin_cpu_grads ................................... True
366
+ pin_cpu_params .................................. True
367
+ pipeline_model_parallel_comm_backend ............ None
368
+ pipeline_model_parallel_size .................... 1
369
+ pipeline_model_parallel_split_rank .............. None
370
+ position_embedding_type ......................... learned_absolute
371
+ pretrained_checkpoint ........................... None
372
+ profile ......................................... False
373
+ profile_ranks ................................... [0]
374
+ profile_step_end ................................ 12
375
+ profile_step_start .............................. 10
376
+ q_lora_rank ..................................... None
377
+ qk_head_dim ..................................... 128
378
+ qk_l2_norm ...................................... False
379
+ qk_layernorm .................................... False
380
+ qk_pos_emb_head_dim ............................. 64
381
+ query_in_block_prob ............................. 0.1
382
+ rampup_batch_size ............................... None
383
+ rank ............................................ 0
384
+ recompute_granularity ........................... None
385
+ recompute_method ................................ None
386
+ recompute_modules ............................... None
387
+ recompute_num_layers ............................ None
388
+ record_memory_history ........................... False
389
+ relative_attention_max_distance ................. 128
390
+ relative_attention_num_buckets .................. 32
391
+ replication ..................................... False
392
+ replication_factor .............................. 2
393
+ replication_jump ................................ None
394
+ rerun_mode ...................................... disabled
395
+ reset_attention_mask ............................ False
396
+ reset_position_ids .............................. False
397
+ result_rejected_tracker_filename ................ None
398
+ retriever_report_topk_accuracies ................ []
399
+ retriever_score_scaling ......................... False
400
+ retriever_seq_length ............................ 256
401
+ retro_add_retriever ............................. False
402
+ retro_attention_gate ............................ 1
403
+ retro_cyclic_train_iters ........................ None
404
+ retro_encoder_attention_dropout ................. 0.1
405
+ retro_encoder_hidden_dropout .................... 0.1
406
+ retro_encoder_layers ............................ 2
407
+ retro_num_neighbors ............................. 2
408
+ retro_num_retrieved_chunks ...................... 2
409
+ retro_project_dir ............................... None
410
+ retro_verify_neighbor_count ..................... True
411
+ rope_scaling_factor ............................. 8.0
412
+ rotary_base ..................................... 10000
413
+ rotary_interleaved .............................. False
414
+ rotary_percent .................................. 1.0
415
+ rotary_scaling_factor ........................... 1.0
416
+ rotary_seq_len_interpolation_factor ............. None
417
+ run_workload_inspector_server ................... False
418
+ sample_rate ..................................... 1.0
419
+ save ............................................ gpt-checkpoint
420
+ save_interval ................................... 16
421
+ scatter_gather_tensors_in_pipeline .............. True
422
+ seed ............................................ 1234
423
+ seq_length ...................................... 1024
424
+ sequence_parallel ............................... False
425
+ sgd_momentum .................................... 0.9
426
+ short_seq_prob .................................. 0.1
427
+ skip_train ...................................... False
428
+ skipped_train_samples ........................... 0
429
+ spec ............................................ None
430
+ split ........................................... None
431
+ squared_relu .................................... False
432
+ start_weight_decay .............................. 0.1
433
+ straggler_ctrlr_port ............................ 65535
434
+ straggler_minmax_count .......................... 1
435
+ suggested_communication_unit_size ............... None
436
+ swiglu .......................................... False
437
+ swin_backbone_type .............................. tiny
438
+ symmetric_ar_type ............................... None
439
+ te_rng_tracker .................................. False
440
+ tensor_model_parallel_size ...................... 4
441
+ tensorboard_dir ................................. tensorboard-logs/
442
+ tensorboard_log_interval ........................ 1
443
+ tensorboard_queue_size .......................... 1000
444
+ test_data_path .................................. None
445
+ test_mode ....................................... False
446
+ tiktoken_num_special_tokens ..................... 1000
447
+ tiktoken_pattern ................................ None
448
+ tiktoken_special_tokens ......................... None
449
+ timing_log_level ................................ 0
450
+ timing_log_option ............................... minmax
451
+ titles_data_path ................................ None
452
+ tokenizer_model ................................. None
453
+ tokenizer_type .................................. GPT2BPETokenizer
454
+ torch_fsdp2_reshard_after_forward ............... True
455
+ tp_comm_bootstrap_backend ....................... nccl
456
+ tp_comm_bulk_dgrad .............................. True
457
+ tp_comm_bulk_wgrad .............................. True
458
+ tp_comm_overlap ................................. False
459
+ tp_comm_overlap_ag .............................. True
460
+ tp_comm_overlap_cfg ............................. None
461
+ tp_comm_overlap_rs .............................. True
462
+ tp_comm_overlap_rs_dgrad ........................ False
463
+ tp_comm_split_ag ................................ True
464
+ tp_comm_split_rs ................................ True
465
+ train_data_path ................................. None
466
+ train_iters ..................................... 10
467
+ train_samples ................................... None
468
+ train_sync_interval ............................. None
469
+ transformer_impl ................................ transformer_engine
470
+ transformer_pipeline_model_parallel_size ........ 1
471
+ untie_embeddings_and_output_weights ............. False
472
+ use_checkpoint_args ............................. False
473
+ use_checkpoint_opt_param_scheduler .............. False
474
+ use_cpu_initialization .......................... None
475
+ use_custom_fsdp ................................. False
476
+ use_dist_ckpt ................................... True
477
+ use_dist_ckpt_deprecated ........................ False
478
+ use_distributed_optimizer ....................... False
479
+ use_flash_attn .................................. False
480
+ use_legacy_models ............................... False
481
+ use_mp_args_from_checkpoint_args ................ False
482
+ use_one_sent_docs ............................... False
483
+ use_persistent_ckpt_worker ...................... False
484
+ use_precision_aware_optimizer ................... False
485
+ use_pytorch_profiler ............................ False
486
+ use_ring_exchange_p2p ........................... False
487
+ use_rope_scaling ................................ False
488
+ use_rotary_position_embeddings .................. False
489
+ use_sharp ....................................... False
490
+ use_tokenizer_model_from_checkpoint_args ........ True
491
+ use_torch_fsdp2 ................................. False
492
+ use_torch_optimizer_for_cpu_offload ............. False
493
+ use_tp_pp_dp_mapping ............................ False
494
+ v_head_dim ...................................... 128
495
+ valid_data_path ................................. None
496
+ variable_seq_lengths ............................ False
497
+ virtual_pipeline_model_parallel_size ............ None
498
+ vision_backbone_type ............................ vit
499
+ vision_pretraining .............................. False
500
+ vision_pretraining_type ......................... classify
501
+ vocab_extra_ids ................................. 0
502
+ vocab_file ...................................... vocab.json
503
+ vocab_size ...................................... None
504
+ wandb_exp_name ..................................
505
+ wandb_project ...................................
506
+ wandb_save_dir ..................................
507
+ weight_decay .................................... 0.1
508
+ weight_decay_incr_style ......................... constant
509
+ wgrad_deferral_limit ............................ 0
510
+ world_size ...................................... 8
511
+ yaml_cfg ........................................ None
512
+ -------------------- end of arguments ---------------------
513
+ INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1
514
+ > building GPT2BPETokenizer tokenizer ...
515
+ INFO:megatron.training.initialize:Setting logging level to 0
516
+ WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written.
517
+ WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it
518
+ INFO:megatron.training.initialize:Setting logging level to 0
519
+ INFO:megatron.training.initialize:Setting logging level to 0
520
+ INFO:megatron.training.initialize:Setting logging level to 0
521
+ > padded vocab (size: 50257) with 431 dummy tokens (new size: 50688)
522
+ INFO:megatron.training.initialize:Setting logging level to 0
523
+ WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED
524
+ > initializing torch distributed ...
525
+ INFO:megatron.training.initialize:Setting logging level to 0
526
+ INFO:megatron.training.initialize:Setting logging level to 0
527
+ INFO:megatron.training.initialize:Setting logging level to 0
528
+ > initialized tensor model parallel with size 4
529
+ > initialized pipeline model parallel with size 1
530
+ > setting random seeds to 1234 ...
531
+ > compiling dataset index builder ...
532
+ make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
533
+ make: Nothing to be done for 'default'.
534
+ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
535
+ >>> done with dataset index builder. Compilation time: 0.042 seconds
536
+ > compiling and loading fused kernels ...