diff --git "a/attnserver.run_attnserver.slurm.sh.343196.out.log" "b/attnserver.run_attnserver.slurm.sh.343196.out.log" --- "a/attnserver.run_attnserver.slurm.sh.343196.out.log" +++ "b/attnserver.run_attnserver.slurm.sh.343196.out.log" @@ -51116,3 +51116,1954 @@ batch tensor after cp: labels torch.Size([2, 24576]) batch tensor after cp: loss_mask torch.Size([2, 24576]) batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +Start exporting trace 2 +Done exporting trace 2 + [2025-06-21 21:18:35] iteration 3/ 10 | consumed samples: 3 | elapsed time per iteration (ms): 20344.6 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 1073741824.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +Start exporting trace 3 +Done exporting trace 3 + [2025-06-21 21:18:46] iteration 4/ 10 | consumed samples: 4 | elapsed time per iteration (ms): 11195.4 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 536870912.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +Start exporting trace 4 +Done exporting trace 4 + [2025-06-21 21:18:58] iteration 5/ 10 | consumed samples: 5 | elapsed time per iteration (ms): 11209.8 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 268435456.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +Start exporting trace 5 +Done exporting trace 5 + [2025-06-21 21:19:09] iteration 6/ 10 | consumed samples: 6 | elapsed time per iteration (ms): 11301.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 134217728.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +Start exporting trace 6 +Done exporting trace 6 + [2025-06-21 21:19:20] iteration 7/ 10 | consumed samples: 7 | elapsed time per iteration (ms): 11245.5 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 67108864.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +Start exporting trace 7 +Done exporting trace 7 + [2025-06-21 21:19:32] iteration 8/ 10 | consumed samples: 8 | elapsed time per iteration (ms): 11832.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 33554432.0 | number of skipped iterations: 1 | number of nan iterations: 0 | +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +batch tensor: tokens torch.Size([2, 98304]) +batch tensor: labels torch.Size([2, 98304]) +batch tensor: loss_mask torch.Size([2, 98304]) +batch tensor: attention_mask torch.Size([2, 1, 98304, 98304]) +batch tensor: position_ids torch.Size([2, 98304]) +batch tensor after cp: tokens torch.Size([2, 24576]) +batch tensor after cp: labels torch.Size([2, 24576]) +batch tensor after cp: loss_mask torch.Size([2, 24576]) +batch tensor after cp: attention_mask torch.Size([2, 1, 24576, 98304]) +batch tensor after cp: position_ids torch.Size([2, 24576]) +Start exporting trace 8 +Done exporting trace 8 + [2025-06-21 21:19:45] iteration 9/ 10 | consumed samples: 9 | elapsed time per iteration (ms): 12817.0 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 16777216.0 | number of skipped iterations: 1 | number of nan iterations: 0 |