import os import json import shutil import datasets import tifffile import pandas as pd import numpy as np S2_MEAN = [752.40087073, 884.29673756, 1144.16202635, 1297.47289228, 1624.90992062, 2194.6423161, 2422.21248945, 2581.64687018, 2368.51236873, 1805.06846033] S2_STD = [1108.02887453, 1155.15170768, 1183.6292542, 1368.11351514, 1370.265037, 1355.55390699, 1416.51487101, 1439.3086061, 1455.52084939, 1343.48379601] class SegMunichDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") DATA_URL = "https://huggingface.co/datasets/GFM-Bench/SegMunich/resolve/main/SegMunich.zip" metadata = { "s2c": { "bands": ["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8A", "B11", "B12"], "channel_wv": [442.7, 492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 864.7, 1613.7, 2202.4], "mean": S2_MEAN, "std": S2_STD, }, "s1": { "bands": None, "channel_wv": None, "mean": None, "std": None, } } SIZE = HEIGHT = WIDTH = 128 spatial_resolution = 10 NUM_CLASSES = 13 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _info(self): metadata = self.metadata metadata['size'] = self.SIZE metadata['num_classes'] = self.NUM_CLASSES metadata['spatial_resolution'] = self.spatial_resolution return datasets.DatasetInfo( description=json.dumps(metadata), features=datasets.Features({ "optical": datasets.Array3D(shape=(10, self.HEIGHT, self.WIDTH), dtype="float32"), "label": datasets.Array2D(shape=(self.HEIGHT, self.WIDTH), dtype="int32"), "optical_channel_wv": datasets.Sequence(datasets.Value("float32")), "spatial_resolution": datasets.Value("int32"), }), ) def _split_generators(self, dl_manager): if isinstance(self.DATA_URL, list): downloaded_files = dl_manager.download(self.DATA_URL) combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz") with open(combined_file, 'wb') as outfile: for part_file in downloaded_files: with open(part_file, 'rb') as infile: shutil.copyfileobj(infile, outfile) data_dir = dl_manager.extract(combined_file) os.remove(combined_file) else: data_dir = dl_manager.download_and_extract(self.DATA_URL) return [ datasets.SplitGenerator( name="train", gen_kwargs={ "split": 'train', "data_dir": data_dir, }, ), datasets.SplitGenerator( name="val", gen_kwargs={ "split": 'val', "data_dir": data_dir, }, ), datasets.SplitGenerator( name="test", gen_kwargs={ "split": 'test', "data_dir": data_dir, }, ) ] def _generate_examples(self, split, data_dir): optical_channel_wv = self.metadata["s2c"]["channel_wv"] spatial_resolution = self.spatial_resolution data_dir = os.path.join(data_dir, "SegMunich") metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv")) metadata = metadata[metadata["split"] == split].reset_index(drop=True) for index, row in metadata.iterrows(): optical_path = os.path.join(data_dir, row.optical_path) optical = self._read_image(optical_path).astype(np.float32) # CxHxW label_path = os.path.join(data_dir, row.label_path) label = self._read_image(label_path).astype(np.int32) label[label == 21] = 1 label[label == 22] = 2 label[label == 23] = 3 label[label == 31] = 4 label[label == 32] = 6 label[label == 33] = 7 label[label == 41] = 8 label[label == 13] = 9 label[label == 14] = 10 sample = { "optical": optical, "optical_channel_wv": optical_channel_wv, "label": label, "spatial_resolution": spatial_resolution, } yield f"{index}", sample def _read_image(self, image_path): """Read tiff image from image_path Args: image_path: Image path to read from Return: image: C, H, W numpy array image """ image = tifffile.imread(image_path) if len(image.shape) == 3: image = np.transpose(image, (2, 0, 1)) return image