Datasets:
Tasks:
Table to Text
Modalities:
Text
Languages:
English
Size:
100K - 1M
ArXiv:
Tags:
data-to-text
License:
File size: 42,217 Bytes
dff8143 3103bee dee7074 3103bee dff8143 79f44f5 5e745ce 79f44f5 dff8143 6d44ee5 dff8143 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 |
---
annotations_creators:
- none
language_creators:
- unknown
language:
- en
license:
- cc-by-sa-3.0
multilinguality:
- unknown
size_categories:
- unknown
source_datasets:
- original
task_categories:
- table-to-text
task_ids: []
pretty_name: totto
tags:
- data-to-text
---
# Dataset Card for GEM/totto
## Dataset Description
- **Homepage:** n/a
- **Repository:** https://github.com/google-research-datasets/totto + [ToTTo Supplementary Repo
- **Paper:** https://aclanthology.org/2020.emnlp-main.89
- **Leaderboard:** https://github.com/google-research-datasets/totto
- **Point of Contact:** Ankur Parikh
### Link to Main Data Card
You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/totto).
### Dataset Summary
ToTTo is a high-quality English table-to-text dataset with more than 100,000 examples in which a table from Wikipedia with highlighted cells is paired with a sentence that describes the highlighted cells. All examples in the dataset were post-edited in multiple steps to ensure that the targets are fully faithful to the input information.
You can load the dataset via:
```
import datasets
data = datasets.load_dataset('GEM/totto')
```
The data loader can be found [here](https://huggingface.co/datasets/GEM/totto).
#### website
n/a
#### paper
[ACL Anthology](https://aclanthology.org/2020.emnlp-main.89)
#### authors
Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, Dipanjan Das
## Dataset Overview
### Where to find the Data and its Documentation
#### Download
<!-- info: What is the link to where the original dataset is hosted? -->
<!-- scope: telescope -->
[ToTTo Main Repo](https://github.com/google-research-datasets/totto) + [ToTTo Supplementary Repo](https://github.com/google-research/language/tree/master/language/totto)
#### Paper
<!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
<!-- scope: telescope -->
[ACL Anthology](https://aclanthology.org/2020.emnlp-main.89)
#### BibTex
<!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
<!-- scope: microscope -->
```
@inproceedings{parikh-etal-2020-totto,
title = "{ToTTo}: A Controlled Table-To-Text Generation Dataset",
author = "Parikh, Ankur and
Wang, Xuezhi and
Gehrmann, Sebastian and
Faruqui, Manaal and
Dhingra, Bhuwan and
Yang, Diyi and
Das, Dipanjan",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.89",
doi = "10.18653/v1/2020.emnlp-main.89",
pages = "1173--1186",
abstract = "We present ToTTo, an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description. To obtain generated targets that are natural but also faithful to the source table, we introduce a dataset construction process where annotators directly revise existing candidate sentences from Wikipedia. We present systematic analyses of our dataset and annotation process as well as results achieved by several state-of-the-art baselines. While usually fluent, existing methods often hallucinate phrases that are not supported by the table, suggesting that this dataset can serve as a useful research benchmark for high-precision conditional text generation.",
}
```
#### Contact Name
<!-- quick -->
<!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
Ankur Parikh
#### Contact Email
<!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. -->
<!-- scope: periscope -->
[email protected]
#### Has a Leaderboard?
<!-- info: Does the dataset have an active leaderboard? -->
<!-- scope: telescope -->
yes
#### Leaderboard Link
<!-- info: Provide a link to the leaderboard. -->
<!-- scope: periscope -->
[Github](https://github.com/google-research-datasets/totto)
#### Leaderboard Details
<!-- info: Briefly describe how the leaderboard evaluates models. -->
<!-- scope: microscope -->
This dataset has an associated, active [leaderboard](https://github.com/google-research-datasets/totto#leaderboard) maintained by the authors.
The test set ground truth targets / references are private, i.e they are not publicly shared or downloadable - hence, leaderboard submission is necessary for test set evaluation.
To evaluate your model on the dev or test set AND/OR submit to the leaderboard, you need to submit your model files through this [form](https://forms.gle/AcF9TRqWrPhPzztt7) (The form provides an option to opt-out of going on the leaderboard).
The leaderboard reports three sets of BLEU, PARENT and BLEURT scores for each submission - on the overall test set, the *Overlap* subset of the test set and the *non-Overlap* subset of the test set.
### Languages and Intended Use
#### Multilingual?
<!-- quick -->
<!-- info: Is the dataset multilingual? -->
<!-- scope: telescope -->
no
#### Covered Dialects
<!-- info: What dialects are covered? Are there multiple dialects per language? -->
<!-- scope: periscope -->
No specific dialects. The original language is from Wikipedia and it was post-edited by crowdraters
#### Covered Languages
<!-- quick -->
<!-- info: What languages/dialects are covered in the dataset? -->
<!-- scope: telescope -->
`English`
#### Whose Language?
<!-- info: Whose language is in the dataset? -->
<!-- scope: periscope -->
The language is post-edited English only (BCP-47: `en`) Wikipedia text. No demographic information about annotators is provided.
Some amounts of what may be called non-English text, including characters such as French accents or Cyrillic characters, could sometimes occur, especially through fields with entity names as values in the input table cells.
#### License
<!-- quick -->
<!-- info: What is the license of the dataset? -->
<!-- scope: telescope -->
cc-by-sa-3.0: Creative Commons Attribution Share Alike 3.0 Unported
#### Intended Use
<!-- info: What is the intended use of the dataset? -->
<!-- scope: microscope -->
ToTTo is a Table-to-Text NLG task, as the paper title says. The task is as follows: Given a Wikipedia table with row names, column names and table cells, with a subset of cells highlighted, generate a natural language description for the highlighted part of the table . The table need not be exactly rectangular in that - cells can sometimes be multi-row or multi-column.
An earlier example of a Table-to-Text NLG task is [Wikibio](https://arxiv.org/abs/1603.07771) - here the inputs were Wikipedia infoboxes (from the top right corner of entity-related Wiki pages). In contrast, ToTTo mostly has Wikipedia tables from the main article content itself. In general, Table-To-Text NLG tasks can be seen as a subclass of Data-To-Text NLG tasks - where the task is to generate natural language descriptions of inputs which are in the form of structured or semi-structured data. In general, all Data-To-Text NLG tasks need not have an explicit table or other structure - e.g the input in [WebNLG](https://www.aclweb.org/anthology/W16-6626.pdf) is simply a list of triples.
Importantly, ToTTo differs from earlier examples of Table-To-Text NLG in that:
1. It does not suffer from the problem of divergent references - where ground truth descriptions themselves have additional information not found in the table. ToTTo overcomes this by having a multi-step annotation process to edit the initial, free-form table descriptions (which are from Wikipedia) to make them faithful, unambiguous and independent of article context.
2. Since it provides **control** in the form of highlighted table cells, it prevents the problem of there being a large number of valid descriptions focussing on different parts of the table.
#### Primary Task
<!-- info: What primary task does the dataset support? -->
<!-- scope: telescope -->
Data-to-Text
#### Communicative Goal
<!-- quick -->
<!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. -->
<!-- scope: periscope -->
The speaker is required to produce a single, coherent English sentence that describes the highlighted cells in the given table, also using metadata and any other information from the table as applicable.
### Credit
#### Curation Organization Type(s)
<!-- info: In what kind of organization did the dataset curation happen? -->
<!-- scope: telescope -->
`industry`
#### Curation Organization(s)
<!-- info: Name the organization(s). -->
<!-- scope: periscope -->
Google Research
#### Dataset Creators
<!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). -->
<!-- scope: microscope -->
Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, Dipanjan Das
#### Funding
<!-- info: Who funded the data creation? -->
<!-- scope: microscope -->
Google Research
#### Who added the Dataset to GEM?
<!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. -->
<!-- scope: microscope -->
Varun Gangal created the initial data card and Yacine Jernite wrote the data loader. The data card was updated with new splits by Simon Mille. Sebastian Gehrmann ported the data card and loader from the v1 to the v2 version and extended it with the new fields.
### Dataset Structure
#### Data Fields
<!-- info: List and describe the fields present in the dataset. -->
<!-- scope: telescope -->
- The `table` field is a `List[List[Dict]]` in row-major order, with outer lists representing rows and the inner lists columns.
- Each `Dict` has the fields `column_span: int`, `is_header: bool`, `row_span: int`, and `value: str`.
- Table metadata consists of `table_page_title`, `table_section_title` and `table_section_texts`
- The `highlighted_cells` are represented as `List[[row_index,column_index]]`, with each `[row_index,column_index]` indicating that `table[row_index][column_index]` is highlighted.
- `example_id` is the unique id per example.
- `sentence_annotations[final_sentence]` which is the table description/generation target
#### Reason for Structure
<!-- info: How was the dataset structure determined? -->
<!-- scope: microscope -->
The structure is aimed to encode highlighted tables in a way that allows rows and columns to span multiple fields in width. The other fields are meta-data about the source and the annotations
#### How were labels chosen?
<!-- info: How were the labels chosen? -->
<!-- scope: microscope -->
The initial table-description pairs are tables from Wikipedia articles, extracted through heuristics such as Number Matching (tables and sentences that overlap with a non-date number of atleast 3 non-zero digits) (Refer to Section 4 of the paper for more)
1. Table Readability: Tables which are deemed non-readable (due to foreign language, poor formatting etc - a very small fraction of 0.5%) are removed from the dataset here.
2. Cell Highlighting: The annotator highlights the cells of the table which support the description.
3. Deletion: The annotator removes phrases in the description which are not supported by the highlighted cells
4. Decontextualization: Descriptions may contain pronouns or other forms of anaphora, or other phenomena which depend on the overall article topic - these are fixed by replacement (e.g replacing pronouns with the entity, provided it occurs in the table). The replacements allowed are limited to one, and annotators are also instructed to conserve fluency.
5. Secondary Annotation: A second set of annotators is shown the output of Stage 4, and asked to fix it if required to ensure it is grammatical.
#### Example Instance
<!-- info: Provide a JSON formatted example of a typical instance in the dataset. -->
<!-- scope: periscope -->
The main repository's `README.md` already provides a thorough walkthrough of data instances and fields [here](https://github.com/google-research-datasets/totto#dataset-description)
Below is the instance for a table from the wiki-page for the musical artist _Weird Al' Yankovic_ , likely listing his on-television appearances.
```
{
"table_page_title": "'Weird Al' Yankovic",
"table_webpage_url": "https://en.wikipedia.org/wiki/%22Weird_Al%22_Yankovic",
"table_section_title": "Television",
"table_section_text": "",
"table": "[Described below]",
"highlighted_cells": [[22, 2], [22, 3], [22, 0], [22, 1], [23, 3], [23, 1], [23, 0]],
"example_id": 12345678912345678912,
"sentence_annotations": [{"original_sentence": "In 2016, Al appeared in 2 episodes of BoJack Horseman as Mr. Peanutbutter's brother, Captain Peanutbutter, and was hired to voice the lead role in the 2016 Disney XD series Milo Murphy's Law.",
"sentence_after_deletion": "In 2016, Al appeared in 2 episodes of BoJack Horseman as Captain Peanutbutter, and was hired to the lead role in the 2016 series Milo Murphy's Law.",
"sentence_after_ambiguity": "In 2016, Al appeared in 2 episodes of BoJack Horseman as Captain Peanutbutter, and was hired for the lead role in the 2016 series Milo Murphy's 'Law.",
"final_sentence": "In 2016, Al appeared in 2 episodes of BoJack Horseman as Captain Peanutbutter and was hired for the lead role in the 2016 series Milo Murphy's Law."}],
}
```
The `table` field is expanded as below:
```
[
[
{
"column_span": 1,
"is_header": true,
"row_span": 1,
"value": "Year"},
{ "column_span": 1,
"is_header": true,
"row_span": 1,
"value": "Title"},
{ "column_span": 1,
"is_header": true,
"row_span": 1,
"value": "Role"},
{ "column_span": 1,
"is_header": true,
"row_span": 1,
"value": "Notes"}
],
[
{ "column_span": 1,
"is_header": false,
"row_span": 1,
"value": "1997"},
{ "column_span": 1,
"is_header": false,
"row_span": 1,
"value": "Eek! The Cat"},
{ "column_span": 1,
"is_header": false,
"row_span": 1,
"value": "Himself"},
{ "column_span": 1,
"is_header": false,
"row_span": 1,
"value": "Episode: 'The FugEektive'"}
], ...
]
```
The [Supplementary Repo](https://github.com/google-research/language/tree/master/language/totto) also provides browsable samples under its `sample/` folder. It additionally provides HTML visualization scripts with their outputs located under the aforementioned folder. The instructions to access and visualize these samples can also be found [here](https://github.com/google-research/language/tree/master/language/totto#visualizing-sample-data).
#### Data Splits
<!-- info: Describe and name the splits in the dataset if there are more than one. -->
<!-- scope: periscope -->
The dataset consists of 120,000 train examples and equi-sized dev and test sets with 7700 examples.
Refer to Table 5 in the paper for a more extensive list of properties about table size, target vocabulary etc and their aggregates.
#### Splitting Criteria
<!-- info: Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g., if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here. -->
<!-- scope: microscope -->
The dev and test splits are further equally distributed between _Overlap_ and _non-Overlap_ .
The examples in the _Overlap_ set are harder on account of the domain shift resulting from them having none of their header (row and column) names in common with those seen during training.
Refer to Table 5 in the paper for a more extensive list of properties about table size, target vocabulary etc and their aggregates.
####
<!-- info: What does an outlier of the dataset in terms of length/perplexity/embedding look like? -->
<!-- scope: microscope -->
There are some very large tables in the dataset with thousands of rows. Table 7 shows some of the challenges of the dataset, showing that very few examples require access to the table description itself which makes those examples an outlier.
## Dataset in GEM
### Rationale for Inclusion in GEM
#### Why is the Dataset in GEM?
<!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? -->
<!-- scope: microscope -->
ToTTo is one of the two datasets representing Table-to-Text NLG in GEM, the other one being [DART](https://arxiv.org/pdf/2007.02871.pdf). Unlike DART, which combines datasets from multiple sources and furnishes them in a unified setting, ToTTo is from a homogeneous source. As explained in the Task Summary above, it also has an annotation process explicitly crafted to reduce divergent descriptions, which is not true of DART.
Furthermore, ToTTo is also an instance of a **controlled** generation task - where in addition to the input (in this case the table) an additional **control** (in this case the highlighted cells) is given as an additional goal for the generation. The DART task formulation does not include controls.
#### Similar Datasets
<!-- info: Do other datasets for the high level task exist? -->
<!-- scope: telescope -->
yes
#### Unique Language Coverage
<!-- info: Does this dataset cover other languages than other datasets for the same task? -->
<!-- scope: periscope -->
no
#### Difference from other GEM datasets
<!-- info: What else sets this dataset apart from other similar datasets in GEM? -->
<!-- scope: microscope -->
The input is much more complex and the quality much better than that of comparable datasets. The highlighted table cells provide a unique challenge to models.
#### Ability that the Dataset measures
<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: periscope -->
Reasoning, surface realization
### GEM-Specific Curation
#### Modificatied for GEM?
<!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
<!-- scope: telescope -->
yes
#### Additional Splits?
<!-- info: Does GEM provide additional splits to the dataset? -->
<!-- scope: telescope -->
yes
#### Split Information
<!-- info: Describe how the new splits were created -->
<!-- scope: periscope -->
9 challenge sets for ToTTo were added to the GEM evaluation suite, 8 created specifically for the task and 1 coming from the original data.
1. We created subsets of the training and development sets of 500 randomly selected inputs each.
2. We applied input scrambling on a subset of 500 randomly selected test instances; the order of the highlighted cells was randomly reassigned.
3. For the input size, we created subpopulations based on the number of input highlighted cells in the whole table.
| Input length | Frequency English |
|---------------|-------------------|
| 1 | 898 |
| 2 | 1850 |
| 3 | 2221 |
| 4 | 1369 |
| 5 | 483 |
| 6 | 379 |
| 7 | 124 |
| 8 | 128 |
| 9 | 61 |
| 10 | 40 |
| 11 | 20 |
| 12 | 26 |
| 13 | 10 |
| 14 | 14 |
| 15 | 14 |
| 16 | 7 |
| 17 | 6 |
| 18 | 5 |
| 19 | 5 |
| 20 | 5 |
| 21 | 4 |
| 22 | 1 |
| 23 | 2 |
| 24 | 4 |
| 25 | 1 |
| 26...496 | 1 |
4. We also divided the test set according to the size of the whole table, based on the idea that larger tables represent a bigger space to take into account when generating the highlighted cells; a larger table could be more challenging to generate accurate text than a smaller table. There are 693 different table sizes, ranging from 2 to 15834 cells.
| Table size |Frequency English|
|-----------------|-----------------|
| 2 | 71 |
| 3 | 52 |
| 4 | 36 |
| 5 | 41 |
| 6 | 144 |
| 7 | 47 |
| 8 | 59 |
| 9 | 105 |
| 10 | 162 |
| 11 | 36 |
| 12 | 158 |
| 13 | 35 |
| 14 | 79 |
| 15 | 136 |
| 16 | 111 |
| 17 | 48 |
| 18 | 123 |
| 19 | 29 |
| 20 | 112 |
| 21 | 91 |
| 22 | 17 |
| 23 | 7 |
| 24 | 169 |
| 25 | 56 |
| 26 | 12 |
| 27 | 40 |
| 28 | 77 |
| 29 | 7 |
| 30 | 122 |
| 31 | 4 |
| 32 | 49 |
| 33 | 21 |
| 34 | 7 |
| 35 | 103 |
| 36 | 131 |
| 37 | 10 |
| 38 | 6 |
| 39 | 26 |
| 40 | 110 |
| 41 | 1 |
| 42 | 54 |
| 43 | 6 |
| 44 | 47 |
| 45 | 79 |
| 46 | 4 |
| 47 | 2 |
| 48 | 114 |
| 49 | 18 |
| 50 | 55 |
| 51 | 11 |
| 52 | 43 |
| 54 | 80 |
| 55 | 73 |
| 56 | 64 |
| 57 | 12 |
| 58 | 1 |
| 60 | 114 |
| 61 | 4 |
| 63 | 39 |
| 64 | 36 |
| 65 | 62 |
| 66 | 48 |
| 67 | 1 |
| 68 | 36 |
| 69 | 6 |
| 70 | 81 |
| 72 | 76 |
| 73 | 1 |
| 74 | 1 |
| 75 | 44 |
| 76 | 33 |
| 77 | 30 |
| 78 | 66 |
| 79 | 1 |
| 80 | 83 |
| 81 | 12 |
| 82 | 1 |
| 84 | 80 |
| 85 | 25 |
| 86 | 1 |
| 87 | 3 |
| 88 | 35 |
| 90 | 78 |
| 91 | 18 |
| 92 | 22 |
| 93 | 5 |
| 94 | 2 |
| 95 | 31 |
| 96 | 50 |
| 98 | 11 |
| 99 | 14 |
| 100 | 48 |
| 102 | 24 |
| 104 | 29 |
| 105 | 36 |
| 106 | 2 |
| 108 | 51 |
| 110 | 31 |
| ...8000+ | (up to 10) |
5. We also created three splits based on the subset of test examples in pages about people.
We then used the structured information in WikiData to identify the following information:
- gender (male, and female),
- nationality grouped by continent (Africa, Asia, Europe, North America, Oceania, and South America)
- ethnicity (African American and all USA)
The categories within gender, ethnicity, and nationality were chosen based on data availability; The ToTTo dataset includes mostly tables that do not focus on people. As a result, only seven people in the original test set are marked as having a non-binary gender. Similar sparsity informed the grouping of nationalities by continent – only 19 countries are represented by more than 10 people in the test set. In case a person has citizenships across multiple continents, we may include the person in any of the included continents.
Finally, ethnicity is very sparsely annotated in WikiData; only 150 test examples in ToTTo have this information and 128 of these are African Americans. We thus are unable to compare the performance on, e.g., Yoruba or Punjabi people, both of which have fewer than five instances. Another caveat here is that only 21 of the 128 people are female. We thus compare the African American population to results on a subset that includes all US citizens.
#### Split Motivation
<!-- info: What aspects of the model's generation capacities were the splits created to test? -->
<!-- scope: periscope -->
generalization, fairness, robustness
### Getting Started with the Task
#### Pointers to Resources
<!-- info: Getting started with in-depth research on the task. Add relevant pointers to resources that researchers can consult when they want to get started digging deeper into the task. -->
<!-- scope: microscope -->
- The highest spot on the leaderboard is currently held by an anonymous method, with BLEU=49.2, PARENT=58.7 and BLEURT=0.249 on the _Overall_ test set.
- The **highest scoring non-anonymous** method is the T5-based method of [Kale, 2020](https://arxiv.org/abs/2005.10433). This method uses a simple row-major linearization scheme to convert the table (it chooses only the highlighted cells and ignores the other cells - table titles and section titles are prefixed at the start of the respective section table) to a flat string. The linearized input - output description pairs from training examples are then used to finetune T5, with BLEU being used as the dev metric to pick checkpoints, and beam search with beam size 10 being the decoding method.
Though the best numbers from this method are naturally from the largest T5-pretrained architecture (T5-3B), the paper shows improvements over the next-highest BERT-to-BERT method even when using T5-Base or T5-Small, which have the same and lesser parameters than BERT-to-BERT respectively.
- The [Supplementary Repo](https://github.com/google-research/language/tree/master/language/totto) provides several useful modules to get started with for new approach implementation:
1. Code for the particular preprocessing / linearization scheme used to linearize the tables into flat sequences for the baseline approaches described in the paper has been described and shared [herein](https://github.com/google-research/language/tree/master/language/totto#baseline-preprocessing)
2. An [evaluation script](https://github.com/google-research/language/tree/master/language/totto#running-the-evaluation-scripts-locally) for locally scoring BLEU and PARENT system outputs on dev (or train) sets. Since BLEURT is a model-based metric, a [slightly separate](https://github.com/google-research/language/tree/master/language/totto#running-the-evaluation-scripts-locall://github.com/google-research/language/tree/master/language/totto#computing-the-bleurt-score) set of instructions is provided to evaluate on the same.
## Previous Results
### Previous Results
#### Measured Model Abilities
<!-- info: What aspect of model ability can be measured with this dataset? -->
<!-- scope: telescope -->
Reasoning, surface realization
#### Metrics
<!-- info: What metrics are typically used for this task? -->
<!-- scope: periscope -->
`BLEU`, `BLEURT`, `Other: Other Metrics`
#### Other Metrics
<!-- info: Definitions of other metrics -->
<!-- scope: periscope -->
Parent: a metric that measures the F-1 score of overlap between input content words and those used in references and those in generated text while ignoring the general surface form. It can thus measure the faithfulness much better than metrics that measure overlap with a reference
#### Proposed Evaluation
<!-- info: List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task. -->
<!-- scope: microscope -->
The metrics are used as in the leaderboard. The original paper additionally conducted a human evaluation focusing on fluency, faithfulness, and coverage.
Faithfulness was measured as whether facts in the text are not supported by the input, and coverage as the number of highlighted cells that were considered. They thus represent precision and recall of the content.
#### Previous results available?
<!-- info: Are previous results available? -->
<!-- scope: telescope -->
yes
#### Relevant Previous Results
<!-- info: What are the most relevant previous results for this task/dataset? -->
<!-- scope: microscope -->
See leaderboard.
## Dataset Curation
### Original Curation
#### Original Curation Rationale
<!-- info: Original curation rationale -->
<!-- scope: telescope -->
Tables occurring in Wikipedia articles were chosen as the data source with the following reasons in mind:
1. Wide coverage in terms of both vocabulary and concepts.
2. Wikipedia tables are not confined to a regular structure, with multi-row or multi-column cells occurring with a sufficient frequency.
3. Likely to contain reasonable-quality, natural text descriptions in the proximity of the table, which are also extractable by heuristics. (see the start of Section 4 for the heuristics used)
To prevent an overlap with the earlier [Wikibio](https://arxiv.org/abs/1603.07771) dataset which focussed on Infobox-first sentence pairs from Wikipedia biography articles, the authors avoid using Infoboxes as a data source.
The overall curation process of initially collecting free text and then annotator-revising it, was designed to combine the advantages of free-form text descriptions (which are fluent, high-quality and unhurriedly written, but also divergent and unfaithful) with annotator descriptions (which can be tailored to be faithful and to conform exactly to desired task requirements)
#### Communicative Goal
<!-- info: What was the communicative goal? -->
<!-- scope: periscope -->
The speaker is required to produce a single, coherent English sentence that describes the highlighted cells in the given table, also using metadata and any other information from the table as applicable.
#### Sourced from Different Sources
<!-- info: Is the dataset aggregated from different data sources? -->
<!-- scope: telescope -->
yes
#### Source Details
<!-- info: List the sources (one per line) -->
<!-- scope: periscope -->
wikipedia.org
### Language Data
#### How was Language Data Obtained?
<!-- info: How was the language data obtained? -->
<!-- scope: telescope -->
`Crowdsourced`
#### Where was it crowdsourced?
<!-- info: If crowdsourced, where from? -->
<!-- scope: periscope -->
`Other crowdworker platform`
#### Language Producers
<!-- info: What further information do we have on the language producers? -->
<!-- scope: microscope -->
The basic source language producers are Wikipedia authors and/or editors, since the annotation starts with the natural text description near the Wikipedia table.
The auxiliary source language producers are the annotators (two per example) who iteratively revise these descriptions to make them unambiguous and faithful to a subset of highlighted cells in the table.
#### Data Validation
<!-- info: Was the text validated by a different worker or a data curator? -->
<!-- scope: telescope -->
validated by crowdworker
#### Data Preprocessing
<!-- info: How was the text data pre-processed? (Enter N/A if the text was not pre-processed) -->
<!-- scope: microscope -->
The initial table-description pairs are tables from Wikipedia articles, extracted through heuristics such as Number Matching (tables and sentences that overlap with a non-date number of atleast 3 non-zero digits) (Refer to Section 4 of the paper for more)
1. Table Readability: Tables which are deemed non-readable (due to foreign language, poor formatting etc - a very small fraction of 0.5%) are removed from the dataset here.
2. Cell Highlighting: The annotator highlights the cells of the table which support the description.
3. Deletion: The annotator removes phrases in the description which are not supported by the highlighted cells
4. Decontextualization: Descriptions may contain pronouns or other forms of anaphora, or other phenomena which depend on the overall article topic - these are fixed by replacement (e.g replacing pronouns with the entity, provided it occurs in the table). The replacements allowed are limited to one, and annotators are also instructed to conserve fluency.
5. Secondary Annotation: A second set of annotators is shown the output of Stage 4, and asked to fix it if required to ensure it is grammatical.
The paper does not specifically describe the annotation platform or location profiles of the annotators.
#### Was Data Filtered?
<!-- info: Were text instances selected or filtered? -->
<!-- scope: telescope -->
algorithmically
#### Filter Criteria
<!-- info: What were the selection criteria? -->
<!-- scope: microscope -->
After construction of the splits, the data curators filtered training examples that had rare table header combinations (<=5 examples) and which had an overlap with the validation or test splits.
### Structured Annotations
#### Additional Annotations?
<!-- quick -->
<!-- info: Does the dataset have additional annotations for each instance? -->
<!-- scope: telescope -->
none
#### Annotation Service?
<!-- info: Was an annotation service used? -->
<!-- scope: telescope -->
no
### Consent
#### Any Consent Policy?
<!-- info: Was there a consent policy involved when gathering the data? -->
<!-- scope: telescope -->
yes
#### Consent Policy Details
<!-- info: What was the consent policy? -->
<!-- scope: microscope -->
Annotators were full time employees that were aware of the goal of the project and consented to having the data released as part of the dataset.
### Private Identifying Information (PII)
#### Contains PII?
<!-- quick -->
<!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? -->
<!-- scope: telescope -->
no PII
#### Justification for no PII
<!-- info: Provide a justification for selecting `no PII` above. -->
<!-- scope: periscope -->
Since the source data is from wikipedia, only data in the public domain is included in the dataset.
### Maintenance
#### Any Maintenance Plan?
<!-- info: Does the original dataset have a maintenance plan? -->
<!-- scope: telescope -->
yes
#### Maintenance Plan Details
<!-- info: Describe the original dataset's maintenance plan. -->
<!-- scope: microscope -->
For submissions, you can delete your data by emailing [email protected] from the email account used to sign up for the submission. Deletion requests will be responded to within 60 days.
#### Maintainer Contact Information
<!-- info: Provide contact information of a person responsible for the dataset maintenance -->
<!-- scope: periscope -->
Ankur Parikh ([email protected])
#### Any Contestation Mechanism?
<!-- info: Does the maintenance plan include a contestation mechanism allowing individuals to request removal fo content? -->
<!-- scope: periscope -->
form submission
#### Contestation Form Link
<!-- info: Provide the form link or contact information -->
<!-- scope: periscope -->
[email protected]
## Broader Social Context
### Previous Work on the Social Impact of the Dataset
#### Usage of Models based on the Data
<!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
<!-- scope: telescope -->
no
### Impact on Under-Served Communities
#### Addresses needs of underserved Communities?
<!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
<!-- scope: telescope -->
no
### Discussion of Biases
#### Any Documented Social Biases?
<!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
<!-- scope: telescope -->
yes
#### Links and Summaries of Analysis Work
<!-- info: Provide links to and summaries of works analyzing these biases. -->
<!-- scope: microscope -->
The original work as well as our GEM paper analyzes some biases
#### Are the Language Producers Representative of the Language?
<!-- info: Does the distribution of language producers in the dataset accurately represent the full distribution of speakers of the language world-wide? If not, how does it differ? -->
<!-- scope: periscope -->
This dataset is created using tables and the table cell contents may hence naturally exhibit biases which have been found to exist in Wikipedia such as some forms of gender bias (e.g [(Graells-Garido et al.,2015)](https://labtomarket.files.wordpress.com/2018/01/wiki_gender_bias.pdf) notes that spouse information is more likely discussed for females than males)
The table descriptions (targets/references) are, as discussed earlier, collected through a two-step process.
1. The natural text description near the table is taken as a starting point. This is Wikipedia article text as created upto that point in time by a chain of collaborative edits from Wikipedia authors.
2. The initial description is revised by chain of two or more annotated revisions, to make it unambiguous and faithful to a set of highlighted table cells.
From their origin in 1), the descriptions may exhibit biases seen in Wikipedia text as mentioned above. From their revisions in 2), the descriptions may show biases originating from annotator-authored text, such as a preference for shorter descriptions since they're faster to write, or linguistic preferences influenced by the locations dominant in the annotator distribution. (However, note that these are likely to be much reduced since the annotators here are merely revising rather than completely authoring. Moreover, each sentence goes through atleast two annotators, which acts as a check against the personal biases of a single annotator.)
Naturally-occurring text is also known to suffer from other biases such as reporting bias [(Gordon and Van Durme, 2013)](https://openreview.net/forum?id=AzxEzvpdE3Wcy¬eId=vmR8qaby8fqxittps://labtomarket.files.wordpress.com/2018/01/wiki_gender_bias.pdf) - this also applies to this dataset via its origin from Wikipedia.
## Considerations for Using the Data
### PII Risks and Liability
#### Potential PII Risk
<!-- info: Considering your answers to the PII part of the Data Curation Section, describe any potential privacy to the data subjects and creators risks when using the dataset. -->
<!-- scope: microscope -->
Since the source data is from wikipedia, only data in the public domain is included in the dataset.
### Licenses
#### Copyright Restrictions on the Dataset
<!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
<!-- scope: periscope -->
`open license - commercial use allowed`
#### Copyright Restrictions on the Language Data
<!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
<!-- scope: periscope -->
`open license - commercial use allowed`
### Known Technical Limitations
#### Technical Limitations
<!-- info: Describe any known technical limitations, such as spurrious correlations, train/test overlap, annotation biases, or mis-annotations, and cite the works that first identified these limitations when possible. -->
<!-- scope: microscope -->
The dataset is limited to topics that are present in Wikipedia, more specifically those topics that are present in articles which contain atleast one table
_Sports_ and _Countries_ form 53.4% of the dataset. The remaining fraction is made up of broader topics like _Europe_, *North America*and _Politics_
|