File size: 5,778 Bytes
6ededbf
9bdbb9b
 
 
 
6ededbf
9bdbb9b
 
 
 
 
 
c8be4f0
9bdbb9b
c8be4f0
 
9bdbb9b
c8be4f0
9bdbb9b
c8be4f0
 
 
 
6ededbf
9bdbb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c25469
9bdbb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c25469
9bdbb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6f92d1
9bdbb9b
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---

annotations_creators:
- expert-generated
language:
- en
license: mit
pretty_name: BioMedGraphica
tags:
- biomedical
- knowledge-graph
- multi-omics
- data-integration
- graph-ml
- drug-discovery
- text-mining
- bioinformatics
size_categories:
- 1M<n<5G
task_categories:
- graph-ml
- token-classification
- feature-extraction
- other
---


# BioMedGraphica

**BioMedGraphica** is an all-in-one platform for biomedical data integration and knowledge graph generation. It harmonizes fragmented biomedical datasets into a unified, graph AI-ready resource that facilitates precision medicine, therapeutic target discovery, and integrative biomedical AI research.

Developed using data from **43 biomedical databases**, BioMedGraphica integrates:
- **11 entity types**
- **30 relation types**
- Over **2.3 million entities** and **27 million relations**

## ✨ Highlights

- **Multi-omics integration**: Genomic, transcriptomic, proteomic, metabolomic, microbiomic, exposomic
- **Graph AI-ready**: Outputs subgraphs ready for GNNs and ML models
- **Soft matching**: Uses BioBERT for fuzzy entity resolution (disease, phenotype, drug, exposure)
- **GUI software**: Provides Windows-based interface for end-to-end pipeline
- **Connected graph variant**: Isolated nodes removed for efficient downstream training

## 📊 Dataset Statistics

| Metric                  | Count       |
|-------------------------|-------------|
| Total Entities          | 2,306,921   |
| Total Relations         | 27,232,091  |
| Connected Entities      | 834,809     |
| Connected Relations     | 27,087,971  |
| Entity Types            | 11          |
| Relation Types          | 30          |

---

### 🧬 Entity Types

| Entity Type  | Count     | Percentage (%) | Connected Count | Connected (%) |
|--------------|-----------|----------------|------------------|----------------|
| Promoter     | 230,358   | 9.99           | 86,238           | 10.33          |
| Gene         | 230,358   | 9.99           | 86,238           | 10.33          |
| Transcript   | 412,326   | 17.87          | 412,039          | 49.36          |
| Protein      | 173,978   | 7.54           | 121,419          | 14.54          |
| Pathway      | 6,793     | 0.29           | 1,930            | 0.23           |
| Metabolite   | 218,335   | 9.46           | 62,364           | 7.47           |
| Microbiota   | 621,882   | 26.96          | 1,119            | 0.13           |
| Exposure     | 1,159     | 0.05           | 1,037            | 0.12           |
| Phenotype    | 19,532    | 0.85           | 19,078           | 2.29           |
| Disease      | 118,814   | 5.15           | 22,429           | 2.69           |
| Drug         | 273,386   | 11.85          | 20,918           | 2.51           |
| **Total**    | **2,306,921** | **100**   | **834,809**      | **100**        |

---

### 🔗 Relation Types

| Relation Type         | Count       | Percentage (%) |
|------------------------|-------------|----------------|
| Promoter-Gene          | 230,358     | 0.85           |
| Gene-Transcript        | 427,810     | 1.57           |
| Transcript-Protein     | 152,585     | 0.56           |
| Protein-Protein        | 16,484,820  | 60.53          |
| Protein-Pathway        | 152,912     | 0.56           |
| Protein-Phenotype      | 478,279     | 1.76           |
| Protein-Disease        | 143,394     | 0.53           |
| Pathway-Protein        | 176,133     | 0.65           |
| Pathway-Drug           | 1,795       | 0.01           |
| Pathway-Exposure       | 301,448     | 1.11           |
| Metabolite-Protein     | 2,804,430   | 10.30          |
| Metabolite-Pathway     | 12,198      | 0.04           |
| Metabolite-Metabolite  | 931         | 0.003          |
| Metabolite-Disease     | 24,970      | 0.09           |
| Microbiota-Disease     | 22,371      | 0.08           |
| Microbiota-Drug        | 866         | 0.003          |
| Exposure-Gene          | 28,982      | 0.11           |
| Exposure-Pathway       | 301,448     | 1.11           |
| Exposure-Disease       | 979,780     | 3.60           |
| Phenotype-Phenotype    | 23,427      | 0.09           |
| Phenotype-Disease      | 181,192     | 0.67           |
| Disease-Phenotype      | 181,192     | 0.67           |
| Disease-Disease        | 12,006      | 0.04           |
| Drug-Protein           | 84,859      | 0.31           |
| Drug-Pathway           | 3,065       | 0.01           |
| Drug-Metabolite        | 3,589       | 0.01           |
| Drug-Microbiota        | 866         | 0.003          |
| Drug-Phenotype         | 93,826      | 0.34           |
| Drug-Disease           | 39,977      | 0.15           |
| Drug-Drug              | 3,882,582   | 14.26          |
| **Total**              | **27,232,091** | **100**     |

---

## 📦 Access and Downloads

- **Knowledge Graph Dataset**: [Hugging Face](https://huggingface.co/datasets/FuhaiLiAiLab/BioMedGraphica)
- **Software & Tutorials**: [GitHub](https://github.com/FuhaiLiAiLab/BioMedGraphica)

## 🧪 Validation

- Hard matching for structured identifiers (e.g. Ensembl, HGNC)
- BioBERT-based soft matching for flexible terms (e.g., diseases, phenotypes, drugs)
- Case study and benchmarking with Synapse dataset

## 📚 Citation
```

@article{zhang2024biomedgraphica,

title={BioMedGraphica: An All-in-One Platform for Biomedical Prior Knowledge and Omic Signaling Graph Generation},

author={Zhang, Heming and Liang, Shunning and Xu, Tim and Li, Wenyu and Huang, Di and Dong, Yuhan and Li, Guangfu and Miller, J Philip and Goedegebuure, S Peter and Sardiello, Marco and others},

journal={bioRxiv},

year={2024}

}

```