Fraser-Greenlee
commited on
Commit
·
19dc6e3
1
Parent(s):
3bdb76c
rm old code
Browse files
dreamcoder/deprecated/__init__.py
DELETED
File without changes
|
dreamcoder/deprecated/network.py
DELETED
@@ -1,479 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Deprecated network.py module. This file only exists to support backwards-compatibility
|
3 |
-
with old pickle files. See lib/__init__.py for more information.
|
4 |
-
"""
|
5 |
-
|
6 |
-
from __future__ import print_function
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
import torch.nn.functional as F
|
11 |
-
from torch.autograd import Variable
|
12 |
-
from torch.nn.parameter import Parameter
|
13 |
-
|
14 |
-
|
15 |
-
# UPGRADING TO INPUT -> OUTPUT -> TARGET
|
16 |
-
# Todo:
|
17 |
-
# [X] Output attending to input
|
18 |
-
# [X] Target attending to output
|
19 |
-
# [ ] check passing hidden state between encoders/decoder (+ pass c?)
|
20 |
-
# [ ] add v_output
|
21 |
-
|
22 |
-
|
23 |
-
def choose(matrix, idxs):
|
24 |
-
if isinstance(idxs, Variable):
|
25 |
-
idxs = idxs.data
|
26 |
-
assert(matrix.ndimension() == 2)
|
27 |
-
unrolled_idxs = idxs + \
|
28 |
-
torch.arange(0, matrix.size(0)).type_as(idxs) * matrix.size(1)
|
29 |
-
return matrix.view(matrix.nelement())[unrolled_idxs]
|
30 |
-
|
31 |
-
|
32 |
-
class Network(nn.Module):
|
33 |
-
"""
|
34 |
-
Todo:
|
35 |
-
- Beam search
|
36 |
-
- check if this is right? attend during P->FC rather than during softmax->P?
|
37 |
-
- allow length 0 inputs/targets
|
38 |
-
- give n_examples as input to FC
|
39 |
-
- Initialise new weights randomly, rather than as zeroes
|
40 |
-
"""
|
41 |
-
|
42 |
-
def __init__(
|
43 |
-
self,
|
44 |
-
input_vocabulary,
|
45 |
-
target_vocabulary,
|
46 |
-
hidden_size=512,
|
47 |
-
embedding_size=128,
|
48 |
-
cell_type="LSTM"):
|
49 |
-
"""
|
50 |
-
:param list input_vocabulary: list of possible inputs
|
51 |
-
:param list target_vocabulary: list of possible targets
|
52 |
-
"""
|
53 |
-
super(Network, self).__init__()
|
54 |
-
self.h_input_encoder_size = hidden_size
|
55 |
-
self.h_output_encoder_size = hidden_size
|
56 |
-
self.h_decoder_size = hidden_size
|
57 |
-
self.embedding_size = embedding_size
|
58 |
-
self.input_vocabulary = input_vocabulary
|
59 |
-
self.target_vocabulary = target_vocabulary
|
60 |
-
# Number of tokens in input vocabulary
|
61 |
-
self.v_input = len(input_vocabulary)
|
62 |
-
# Number of tokens in target vocabulary
|
63 |
-
self.v_target = len(target_vocabulary)
|
64 |
-
|
65 |
-
self.cell_type = cell_type
|
66 |
-
if cell_type == 'GRU':
|
67 |
-
self.input_encoder_cell = nn.GRUCell(
|
68 |
-
input_size=self.v_input + 1,
|
69 |
-
hidden_size=self.h_input_encoder_size,
|
70 |
-
bias=True)
|
71 |
-
self.input_encoder_init = Parameter(
|
72 |
-
torch.rand(1, self.h_input_encoder_size))
|
73 |
-
self.output_encoder_cell = nn.GRUCell(
|
74 |
-
input_size=self.v_input +
|
75 |
-
1 +
|
76 |
-
self.h_input_encoder_size,
|
77 |
-
hidden_size=self.h_output_encoder_size,
|
78 |
-
bias=True)
|
79 |
-
self.decoder_cell = nn.GRUCell(
|
80 |
-
input_size=self.v_target + 1,
|
81 |
-
hidden_size=self.h_decoder_size,
|
82 |
-
bias=True)
|
83 |
-
if cell_type == 'LSTM':
|
84 |
-
self.input_encoder_cell = nn.LSTMCell(
|
85 |
-
input_size=self.v_input + 1,
|
86 |
-
hidden_size=self.h_input_encoder_size,
|
87 |
-
bias=True)
|
88 |
-
self.input_encoder_init = nn.ParameterList([Parameter(torch.rand(
|
89 |
-
1, self.h_input_encoder_size)), Parameter(torch.rand(1, self.h_input_encoder_size))])
|
90 |
-
self.output_encoder_cell = nn.LSTMCell(
|
91 |
-
input_size=self.v_input +
|
92 |
-
1 +
|
93 |
-
self.h_input_encoder_size,
|
94 |
-
hidden_size=self.h_output_encoder_size,
|
95 |
-
bias=True)
|
96 |
-
self.output_encoder_init_c = Parameter(
|
97 |
-
torch.rand(1, self.h_output_encoder_size))
|
98 |
-
self.decoder_cell = nn.LSTMCell(
|
99 |
-
input_size=self.v_target + 1,
|
100 |
-
hidden_size=self.h_decoder_size,
|
101 |
-
bias=True)
|
102 |
-
self.decoder_init_c = Parameter(torch.rand(1, self.h_decoder_size))
|
103 |
-
|
104 |
-
self.W = nn.Linear(
|
105 |
-
self.h_output_encoder_size +
|
106 |
-
self.h_decoder_size,
|
107 |
-
self.embedding_size)
|
108 |
-
self.V = nn.Linear(self.embedding_size, self.v_target + 1)
|
109 |
-
self.input_A = nn.Bilinear(
|
110 |
-
self.h_input_encoder_size,
|
111 |
-
self.h_output_encoder_size,
|
112 |
-
1,
|
113 |
-
bias=False)
|
114 |
-
self.output_A = nn.Bilinear(
|
115 |
-
self.h_output_encoder_size,
|
116 |
-
self.h_decoder_size,
|
117 |
-
1,
|
118 |
-
bias=False)
|
119 |
-
self.input_EOS = torch.zeros(1, self.v_input + 1)
|
120 |
-
self.input_EOS[:, -1] = 1
|
121 |
-
self.input_EOS = Parameter(self.input_EOS)
|
122 |
-
self.output_EOS = torch.zeros(1, self.v_input + 1)
|
123 |
-
self.output_EOS[:, -1] = 1
|
124 |
-
self.output_EOS = Parameter(self.output_EOS)
|
125 |
-
self.target_EOS = torch.zeros(1, self.v_target + 1)
|
126 |
-
self.target_EOS[:, -1] = 1
|
127 |
-
self.target_EOS = Parameter(self.target_EOS)
|
128 |
-
|
129 |
-
def __getstate__(self):
|
130 |
-
if hasattr(self, 'opt'):
|
131 |
-
return dict([(k, v) for k, v in self.__dict__.items(
|
132 |
-
) if k is not 'opt'] + [('optstate', self.opt.state_dict())])
|
133 |
-
# return {**{k:v for k,v in self.__dict__.items() if k is not 'opt'},
|
134 |
-
# 'optstate': self.opt.state_dict()}
|
135 |
-
else:
|
136 |
-
return self.__dict__
|
137 |
-
|
138 |
-
def __setstate__(self, state):
|
139 |
-
self.__dict__.update(state)
|
140 |
-
# Legacy:
|
141 |
-
if isinstance(self.input_encoder_init, tuple):
|
142 |
-
self.input_encoder_init = nn.ParameterList(
|
143 |
-
list(self.input_encoder_init))
|
144 |
-
|
145 |
-
def clear_optimiser(self):
|
146 |
-
if hasattr(self, 'opt'):
|
147 |
-
del self.opt
|
148 |
-
if hasattr(self, 'optstate'):
|
149 |
-
del self.optstate
|
150 |
-
|
151 |
-
def get_optimiser(self):
|
152 |
-
self.opt = torch.optim.Adam(self.parameters(), lr=0.001)
|
153 |
-
if hasattr(self, 'optstate'):
|
154 |
-
self.opt.load_state_dict(self.optstate)
|
155 |
-
|
156 |
-
def optimiser_step(self, inputs, outputs, target):
|
157 |
-
if not hasattr(self, 'opt'):
|
158 |
-
self.get_optimiser()
|
159 |
-
score = self.score(inputs, outputs, target, autograd=True).mean()
|
160 |
-
(-score).backward()
|
161 |
-
self.opt.step()
|
162 |
-
self.opt.zero_grad()
|
163 |
-
return score.data[0]
|
164 |
-
|
165 |
-
def set_target_vocabulary(self, target_vocabulary):
|
166 |
-
if target_vocabulary == self.target_vocabulary:
|
167 |
-
return
|
168 |
-
|
169 |
-
V_weight = []
|
170 |
-
V_bias = []
|
171 |
-
decoder_ih = []
|
172 |
-
|
173 |
-
for i in range(len(target_vocabulary)):
|
174 |
-
if target_vocabulary[i] in self.target_vocabulary:
|
175 |
-
j = self.target_vocabulary.index(target_vocabulary[i])
|
176 |
-
V_weight.append(self.V.weight.data[j:j + 1])
|
177 |
-
V_bias.append(self.V.bias.data[j:j + 1])
|
178 |
-
decoder_ih.append(self.decoder_cell.weight_ih.data[:, j:j + 1])
|
179 |
-
else:
|
180 |
-
V_weight.append(torch.zeros(1, self.V.weight.size(1)))
|
181 |
-
V_bias.append(torch.ones(1) * -10)
|
182 |
-
decoder_ih.append(
|
183 |
-
torch.zeros(
|
184 |
-
self.decoder_cell.weight_ih.data.size(0), 1))
|
185 |
-
|
186 |
-
V_weight.append(self.V.weight.data[-1:])
|
187 |
-
V_bias.append(self.V.bias.data[-1:])
|
188 |
-
decoder_ih.append(self.decoder_cell.weight_ih.data[:, -1:])
|
189 |
-
|
190 |
-
self.target_vocabulary = target_vocabulary
|
191 |
-
self.v_target = len(target_vocabulary)
|
192 |
-
self.target_EOS.data = torch.zeros(1, self.v_target + 1)
|
193 |
-
self.target_EOS.data[:, -1] = 1
|
194 |
-
|
195 |
-
self.V.weight.data = torch.cat(V_weight, dim=0)
|
196 |
-
self.V.bias.data = torch.cat(V_bias, dim=0)
|
197 |
-
self.V.out_features = self.V.bias.data.size(0)
|
198 |
-
|
199 |
-
self.decoder_cell.weight_ih.data = torch.cat(decoder_ih, dim=1)
|
200 |
-
self.decoder_cell.input_size = self.decoder_cell.weight_ih.data.size(1)
|
201 |
-
|
202 |
-
self.clear_optimiser()
|
203 |
-
|
204 |
-
def input_encoder_get_init(self, batch_size):
|
205 |
-
if self.cell_type == "GRU":
|
206 |
-
return self.input_encoder_init.repeat(batch_size, 1)
|
207 |
-
if self.cell_type == "LSTM":
|
208 |
-
return tuple(x.repeat(batch_size, 1)
|
209 |
-
for x in self.input_encoder_init)
|
210 |
-
|
211 |
-
def output_encoder_get_init(self, input_encoder_h):
|
212 |
-
if self.cell_type == "GRU":
|
213 |
-
return input_encoder_h
|
214 |
-
if self.cell_type == "LSTM":
|
215 |
-
return (
|
216 |
-
input_encoder_h,
|
217 |
-
self.output_encoder_init_c.repeat(
|
218 |
-
input_encoder_h.size(0),
|
219 |
-
1))
|
220 |
-
|
221 |
-
def decoder_get_init(self, output_encoder_h):
|
222 |
-
if self.cell_type == "GRU":
|
223 |
-
return output_encoder_h
|
224 |
-
if self.cell_type == "LSTM":
|
225 |
-
return (
|
226 |
-
output_encoder_h,
|
227 |
-
self.decoder_init_c.repeat(
|
228 |
-
output_encoder_h.size(0),
|
229 |
-
1))
|
230 |
-
|
231 |
-
def cell_get_h(self, cell_state):
|
232 |
-
if self.cell_type == "GRU":
|
233 |
-
return cell_state
|
234 |
-
if self.cell_type == "LSTM":
|
235 |
-
return cell_state[0]
|
236 |
-
|
237 |
-
def score(self, inputs, outputs, target, autograd=False):
|
238 |
-
inputs = self.inputsToTensors(inputs)
|
239 |
-
outputs = self.inputsToTensors(outputs)
|
240 |
-
target = self.targetToTensor(target)
|
241 |
-
target, score = self.run(inputs, outputs, target=target, mode="score")
|
242 |
-
# target = self.tensorToOutput(target)
|
243 |
-
if autograd:
|
244 |
-
return score
|
245 |
-
else:
|
246 |
-
return score.data
|
247 |
-
|
248 |
-
def sample(self, inputs, outputs):
|
249 |
-
inputs = self.inputsToTensors(inputs)
|
250 |
-
outputs = self.inputsToTensors(outputs)
|
251 |
-
target, score = self.run(inputs, outputs, mode="sample")
|
252 |
-
target = self.tensorToOutput(target)
|
253 |
-
return target
|
254 |
-
|
255 |
-
def sampleAndScore(self, inputs, outputs, nRepeats=None):
|
256 |
-
inputs = self.inputsToTensors(inputs)
|
257 |
-
outputs = self.inputsToTensors(outputs)
|
258 |
-
if nRepeats is None:
|
259 |
-
target, score = self.run(inputs, outputs, mode="sample")
|
260 |
-
target = self.tensorToOutput(target)
|
261 |
-
return target, score.data
|
262 |
-
else:
|
263 |
-
target = []
|
264 |
-
score = []
|
265 |
-
for i in range(nRepeats):
|
266 |
-
# print("repeat %d" % i)
|
267 |
-
t, s = self.run(inputs, outputs, mode="sample")
|
268 |
-
t = self.tensorToOutput(t)
|
269 |
-
target.extend(t)
|
270 |
-
score.extend(list(s.data))
|
271 |
-
return target, score
|
272 |
-
|
273 |
-
def run(self, inputs, outputs, target=None, mode="sample"):
|
274 |
-
"""
|
275 |
-
:param mode: "score" returns log p(target|input), "sample" returns target ~ p(-|input)
|
276 |
-
:param List[LongTensor] inputs: n_examples * (max_length_input * batch_size)
|
277 |
-
:param List[LongTensor] target: max_length_target * batch_size
|
278 |
-
"""
|
279 |
-
assert((mode == "score" and target is not None) or mode == "sample")
|
280 |
-
|
281 |
-
n_examples = len(inputs)
|
282 |
-
max_length_input = [inputs[j].size(0) for j in range(n_examples)]
|
283 |
-
max_length_output = [outputs[j].size(0) for j in range(n_examples)]
|
284 |
-
max_length_target = target.size(0) if target is not None else 10
|
285 |
-
batch_size = inputs[0].size(1)
|
286 |
-
|
287 |
-
score = Variable(torch.zeros(batch_size))
|
288 |
-
inputs_scatter = [Variable(torch.zeros(max_length_input[j], batch_size, self.v_input + 1).scatter_(
|
289 |
-
2, inputs[j][:, :, None], 1)) for j in range(n_examples)] # n_examples * (max_length_input * batch_size * v_input+1)
|
290 |
-
outputs_scatter = [Variable(torch.zeros(max_length_output[j], batch_size, self.v_input + 1).scatter_(
|
291 |
-
2, outputs[j][:, :, None], 1)) for j in range(n_examples)] # n_examples * (max_length_output * batch_size * v_input+1)
|
292 |
-
if target is not None:
|
293 |
-
target_scatter = Variable(torch.zeros(max_length_target,
|
294 |
-
batch_size,
|
295 |
-
self.v_target + 1).scatter_(2,
|
296 |
-
target[:,
|
297 |
-
:,
|
298 |
-
None],
|
299 |
-
1)) # max_length_target * batch_size * v_target+1
|
300 |
-
|
301 |
-
# -------------- Input Encoder -------------
|
302 |
-
|
303 |
-
# n_examples * (max_length_input * batch_size * h_encoder_size)
|
304 |
-
input_H = []
|
305 |
-
input_embeddings = [] # h for example at INPUT_EOS
|
306 |
-
# 0 until (and including) INPUT_EOS, then -inf
|
307 |
-
input_attention_mask = []
|
308 |
-
for j in range(n_examples):
|
309 |
-
active = torch.Tensor(max_length_input[j], batch_size).byte()
|
310 |
-
active[0, :] = 1
|
311 |
-
state = self.input_encoder_get_init(batch_size)
|
312 |
-
hs = []
|
313 |
-
for i in range(max_length_input[j]):
|
314 |
-
state = self.input_encoder_cell(
|
315 |
-
inputs_scatter[j][i, :, :], state)
|
316 |
-
if i + 1 < max_length_input[j]:
|
317 |
-
active[i + 1, :] = active[i, :] * \
|
318 |
-
(inputs[j][i, :] != self.v_input)
|
319 |
-
h = self.cell_get_h(state)
|
320 |
-
hs.append(h[None, :, :])
|
321 |
-
input_H.append(torch.cat(hs, 0))
|
322 |
-
embedding_idx = active.sum(0).long() - 1
|
323 |
-
embedding = input_H[j].gather(0, Variable(
|
324 |
-
embedding_idx[None, :, None].repeat(1, 1, self.h_input_encoder_size)))[0]
|
325 |
-
input_embeddings.append(embedding)
|
326 |
-
input_attention_mask.append(Variable(active.float().log()))
|
327 |
-
|
328 |
-
# -------------- Output Encoder -------------
|
329 |
-
|
330 |
-
def input_attend(j, h_out):
|
331 |
-
"""
|
332 |
-
'general' attention from https://arxiv.org/pdf/1508.04025.pdf
|
333 |
-
:param j: Index of example
|
334 |
-
:param h_out: batch_size * h_output_encoder_size
|
335 |
-
"""
|
336 |
-
scores = self.input_A(
|
337 |
-
input_H[j].view(
|
338 |
-
max_length_input[j] * batch_size,
|
339 |
-
self.h_input_encoder_size),
|
340 |
-
h_out.view(
|
341 |
-
batch_size,
|
342 |
-
self.h_output_encoder_size).repeat(
|
343 |
-
max_length_input[j],
|
344 |
-
1)).view(
|
345 |
-
max_length_input[j],
|
346 |
-
batch_size) + input_attention_mask[j]
|
347 |
-
c = (F.softmax(scores[:, :, None], dim=0) * input_H[j]).sum(0)
|
348 |
-
return c
|
349 |
-
|
350 |
-
# n_examples * (max_length_input * batch_size * h_encoder_size)
|
351 |
-
output_H = []
|
352 |
-
output_embeddings = [] # h for example at INPUT_EOS
|
353 |
-
# 0 until (and including) INPUT_EOS, then -inf
|
354 |
-
output_attention_mask = []
|
355 |
-
for j in range(n_examples):
|
356 |
-
active = torch.Tensor(max_length_output[j], batch_size).byte()
|
357 |
-
active[0, :] = 1
|
358 |
-
state = self.output_encoder_get_init(input_embeddings[j])
|
359 |
-
hs = []
|
360 |
-
h = self.cell_get_h(state)
|
361 |
-
for i in range(max_length_output[j]):
|
362 |
-
state = self.output_encoder_cell(torch.cat(
|
363 |
-
[outputs_scatter[j][i, :, :], input_attend(j, h)], 1), state)
|
364 |
-
if i + 1 < max_length_output[j]:
|
365 |
-
active[i + 1, :] = active[i, :] * \
|
366 |
-
(outputs[j][i, :] != self.v_input)
|
367 |
-
h = self.cell_get_h(state)
|
368 |
-
hs.append(h[None, :, :])
|
369 |
-
output_H.append(torch.cat(hs, 0))
|
370 |
-
embedding_idx = active.sum(0).long() - 1
|
371 |
-
embedding = output_H[j].gather(0, Variable(
|
372 |
-
embedding_idx[None, :, None].repeat(1, 1, self.h_output_encoder_size)))[0]
|
373 |
-
output_embeddings.append(embedding)
|
374 |
-
output_attention_mask.append(Variable(active.float().log()))
|
375 |
-
|
376 |
-
# ------------------ Decoder -----------------
|
377 |
-
|
378 |
-
def output_attend(j, h_dec):
|
379 |
-
"""
|
380 |
-
'general' attention from https://arxiv.org/pdf/1508.04025.pdf
|
381 |
-
:param j: Index of example
|
382 |
-
:param h_dec: batch_size * h_decoder_size
|
383 |
-
"""
|
384 |
-
scores = self.output_A(
|
385 |
-
output_H[j].view(
|
386 |
-
max_length_output[j] * batch_size,
|
387 |
-
self.h_output_encoder_size),
|
388 |
-
h_dec.view(
|
389 |
-
batch_size,
|
390 |
-
self.h_decoder_size).repeat(
|
391 |
-
max_length_output[j],
|
392 |
-
1)).view(
|
393 |
-
max_length_output[j],
|
394 |
-
batch_size) + output_attention_mask[j]
|
395 |
-
c = (F.softmax(scores[:, :, None], dim=0) * output_H[j]).sum(0)
|
396 |
-
return c
|
397 |
-
|
398 |
-
# Multi-example pooling: Figure 3, https://arxiv.org/pdf/1703.07469.pdf
|
399 |
-
target = target if mode == "score" else torch.zeros(
|
400 |
-
max_length_target, batch_size).long()
|
401 |
-
decoder_states = [
|
402 |
-
self.decoder_get_init(
|
403 |
-
output_embeddings[j]) for j in range(n_examples)] # P
|
404 |
-
active = torch.ones(batch_size).byte()
|
405 |
-
for i in range(max_length_target):
|
406 |
-
FC = []
|
407 |
-
for j in range(n_examples):
|
408 |
-
h = self.cell_get_h(decoder_states[j])
|
409 |
-
p_aug = torch.cat([h, output_attend(j, h)], 1)
|
410 |
-
FC.append(F.tanh(self.W(p_aug)[None, :, :]))
|
411 |
-
# batch_size * embedding_size
|
412 |
-
m = torch.max(torch.cat(FC, 0), 0)[0]
|
413 |
-
logsoftmax = F.log_softmax(self.V(m), dim=1)
|
414 |
-
if mode == "sample":
|
415 |
-
target[i, :] = torch.multinomial(
|
416 |
-
logsoftmax.data.exp(), 1)[:, 0]
|
417 |
-
score = score + \
|
418 |
-
choose(logsoftmax, target[i, :]) * Variable(active.float())
|
419 |
-
active *= (target[i, :] != self.v_target)
|
420 |
-
for j in range(n_examples):
|
421 |
-
if mode == "score":
|
422 |
-
target_char_scatter = target_scatter[i, :, :]
|
423 |
-
elif mode == "sample":
|
424 |
-
target_char_scatter = Variable(torch.zeros(
|
425 |
-
batch_size, self.v_target + 1).scatter_(1, target[i, :, None], 1))
|
426 |
-
decoder_states[j] = self.decoder_cell(
|
427 |
-
target_char_scatter, decoder_states[j])
|
428 |
-
return target, score
|
429 |
-
|
430 |
-
def inputsToTensors(self, inputss):
|
431 |
-
"""
|
432 |
-
:param inputss: size = nBatch * nExamples
|
433 |
-
"""
|
434 |
-
tensors = []
|
435 |
-
for j in range(len(inputss[0])):
|
436 |
-
inputs = [x[j] for x in inputss]
|
437 |
-
maxlen = max(len(s) for s in inputs)
|
438 |
-
t = torch.ones(
|
439 |
-
1 if maxlen == 0 else maxlen + 1,
|
440 |
-
len(inputs)).long() * self.v_input
|
441 |
-
for i in range(len(inputs)):
|
442 |
-
s = inputs[i]
|
443 |
-
if len(s) > 0:
|
444 |
-
t[:len(s), i] = torch.LongTensor(
|
445 |
-
[self.input_vocabulary.index(x) for x in s])
|
446 |
-
tensors.append(t)
|
447 |
-
return tensors
|
448 |
-
|
449 |
-
def targetToTensor(self, targets):
|
450 |
-
"""
|
451 |
-
:param targets:
|
452 |
-
"""
|
453 |
-
maxlen = max(len(s) for s in targets)
|
454 |
-
t = torch.ones(
|
455 |
-
1 if maxlen == 0 else maxlen + 1,
|
456 |
-
len(targets)).long() * self.v_target
|
457 |
-
for i in range(len(targets)):
|
458 |
-
s = targets[i]
|
459 |
-
if len(s) > 0:
|
460 |
-
t[:len(s), i] = torch.LongTensor(
|
461 |
-
[self.target_vocabulary.index(x) for x in s])
|
462 |
-
return t
|
463 |
-
|
464 |
-
def tensorToOutput(self, tensor):
|
465 |
-
"""
|
466 |
-
:param tensor: max_length * batch_size
|
467 |
-
"""
|
468 |
-
out = []
|
469 |
-
for i in range(tensor.size(1)):
|
470 |
-
l = tensor[:, i].tolist()
|
471 |
-
if l[0] == self.v_target:
|
472 |
-
out.append([])
|
473 |
-
elif self.v_target in l:
|
474 |
-
final = tensor[:, i].tolist().index(self.v_target)
|
475 |
-
out.append([self.target_vocabulary[x]
|
476 |
-
for x in tensor[:final, i]])
|
477 |
-
else:
|
478 |
-
out.append([self.target_vocabulary[x] for x in tensor[:, i]])
|
479 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|