Datasets:
upload dataset_infos.json
#2
by
apiergentili
- opened
- dataset_infos.json +17 -0
dataset_infos.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"dataset_name" : "GeNTE",
|
| 3 |
+
"description": "GeNTE (Gender-Neutral Translation Evaluation) is a natural, bilingual corpus designed to benchmark the ability of machine translation systems to generate gender-neutral translations.",
|
| 4 |
+
"citation": "@inproceedings{piergentili-etal-2023-hi, title = \"Hi Guys or Hi Folks? Benchmarking Gender-Neutral Machine Translation with the {G}e{NTE} Corpus\", author = \"Piergentili, Andrea and Savoldi, Beatrice and Fucci, Dennis and Negri, Matteo and Bentivogli, Luisa\", editor = \"Bouamor, Houda and Pino, Juan and Bali, Kalika\", booktitle = \"Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing\", month = dec, year = \"2023\", address = \"Singapore\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/2023.emnlp-main.873\", doi = \"10.18653/v1/2023.emnlp-main.873\", pages = \"14124--14140\"}",
|
| 5 |
+
"homepage": " https://mt.fbk.eu/gente/",
|
| 6 |
+
"license": "cc-by-4.0",
|
| 7 |
+
"task_ids": ["translation", "text-generation"],
|
| 8 |
+
"splits": {
|
| 9 |
+
"test": {
|
| 10 |
+
"num_examples": 1500
|
| 11 |
+
},
|
| 12 |
+
"common": {
|
| 13 |
+
"num_examples": 200
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"version": "1.0"
|
| 17 |
+
}
|