import datasets from dataclasses import dataclass import csv _DESCRIPTION = '''WES: Learning Semantic Similarity from 6M Names for 1M Entities''' _CITE = '''\ @inproceedings{exr0n2022WES author={Exr0n}, title={WES: Learning Semantic Similarity from 6M Names for 1M Entities}, year={2022} } ''' @dataclass class WikiEntitySimilarityConfig(datasets.BuilderConfig): """BuilderConfig for CSV.""" threshhold: int = None path: str = None class WikiEntitySimilarity(datasets.GeneratorBasedBuilder): """WES: Learning semantic similarity from 6M names for 1M entities""" BUILDER_CONFIG_CLASS = WikiEntitySimilarityConfig BUILDER_CONFIGS = [ WikiEntitySimilarityConfig( name='2008thresh5', description='min 5 inbound links, lowest quality', threshhold=5, path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_5.csv" ), WikiEntitySimilarityConfig( name='2008thresh10', description='min 10 inbound links, medium quality', threshhold=10, path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_10.csv" ), WikiEntitySimilarityConfig( name='2008thresh20', description='min 20 inbound links, high quality', threshhold=20, path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_20.csv" ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { 'article': datasets.Value('string'), 'link_text': datasets.Value('string'), } ), citation=_CITE, homepage="https://github.com/Exr0nProjects/wiki-entity-similarity", ) def _split_generators(self, dl_manager): filepath = dl_manager.download(self.config.path) return [ datasets.SplitGenerator(name=datasets.Split.ALL, gen_kwargs={ 'filepath': filepath }) ] def _generate_examples(self, filepath): with open(filepath, 'r') as rf: reader = csv.DictReader(rf) for i, row in enumerate(reader): yield i, row