Datasets:
File size: 2,433 Bytes
e24dfb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import datasets
from dataclasses import dataclass
import csv
_DESCRIPTION = '''WES: Learning Semantic Similarity from 6M Names for 1M Entities'''
_CITE = '''\
@inproceedings{exr0n2022WES
author={Exr0n},
title={WES: Learning Semantic Similarity from 6M Names for 1M Entities},
year={2022}
}
'''
@dataclass
class WikiEntitySimilarityConfig(datasets.BuilderConfig):
"""BuilderConfig for CSV."""
threshhold: int = None
path: str = None
class WikiEntitySimilarity(datasets.GeneratorBasedBuilder):
"""WES: Learning semantic similarity from 6M names for 1M entities"""
BUILDER_CONFIG_CLASS = WikiEntitySimilarityConfig
BUILDER_CONFIGS = [
WikiEntitySimilarityConfig(
name='2008thresh5',
description='min 5 inbound links, lowest quality',
threshhold=5,
path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_5.csv"
),
WikiEntitySimilarityConfig(
name='2008thresh10',
description='min 10 inbound links, medium quality',
threshhold=10,
path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_10.csv"
),
WikiEntitySimilarityConfig(
name='2008thresh20',
description='min 20 inbound links, high quality',
threshhold=20,
path="https://huggingface.co/datasets/Exr0n/wiki-entity-similarity/resolve/main/link_synonyms-2018-thresh_20.csv"
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
'article': datasets.Value('string'),
'link_text': datasets.Value('string'),
}
),
citation=_CITE,
homepage="https://github.com/Exr0nProjects/wiki-entity-similarity",
)
def _split_generators(self, dl_manager):
filepath = dl_manager.download(self.config.path)
return [ datasets.SplitGenerator(name=datasets.Split.ALL,
gen_kwargs={ 'filepath': filepath }) ]
def _generate_examples(self, filepath):
with open(filepath, 'r') as rf:
reader = csv.DictReader(rf)
for i, row in enumerate(reader):
yield i, row
|