import os import warnings from io import BytesIO from typing import Dict, Optional, Union import datasets import numpy as np class customized_features(datasets.features.Audio): def decode_example(self, value): """Decode example audio file into audio data. Args: value: Audio file path. Returns: dict """ # TODO: backard compatibility for users without audio dependencies array, sampling_rate = ( self._decode_example_with_torchaudio(value) if value.endswith(".mp3") else self._decode_example_with_librosa(value) ) return {"path": value, "array": array, "sampling_rate": sampling_rate} def _decode_example_with_librosa(self, value): try: import librosa except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa'.") from err try: with open(value, "rb") as f: array, sampling_rate = librosa.load(f, sr=self.sampling_rate, mono=self.mono) except Exception as e: warnings.warn(f"Error while reading {value} using librosa: {e}") array = np.empty(0) sampling_rate = self.sampling_rate return array, sampling_rate def _decode_example_with_torchaudio(self, value): try: import torchaudio import torchaudio.transforms as T except ImportError as err: raise ImportError("To support decoding 'mp3' audio files, please install 'torchaudio'.") from err try: torchaudio.set_audio_backend("sox_io") except RuntimeError as err: raise ImportError("To support decoding 'mp3' audio files, please install 'sox'.") from err array, sampling_rate = torchaudio.load(value) if self.sampling_rate and self.sampling_rate != sampling_rate: if not hasattr(self, "_resampler"): self._resampler = T.Resample(sampling_rate, self.sampling_rate) array = self._resampler(array) sampling_rate = self.sampling_rate array = array.numpy() if self.mono: array = array.mean(axis=0) return array, sampling_rate def decode_batch(self, values): decoded_batch = defaultdict(list) for value in values: decoded_example = self.decode_example(value) for k, v in decoded_example.items(): decoded_batch[k].append(v) return dict(decoded_batch)