import json import numpy as np import networkx as nx from collections import Counter, defaultdict import random import scipy.sparse as sp from scipy.sparse.linalg import eigsh import sys import os try: import community as community_louvain except ImportError: print("Warning: python-louvain package not found. Installing...") import subprocess subprocess.check_call([sys.executable, "-m", "pip", "install", "python-louvain"]) import community as community_louvain def load_graph_from_json(json_file): """Load graph from a JSON file with nodes.""" nodes = [] try: # First try to parse as a single JSON array or object with open(json_file, 'r', encoding='utf-8') as f: content = f.read().strip() try: data = json.loads(content) if isinstance(data, list): nodes = data else: nodes = [data] except json.JSONDecodeError: # Reset and try parsing line by line nodes = [] with open(json_file, 'r') as f: for line in f: line = line.strip() if line: # Skip empty lines try: node_data = json.loads(line) nodes.append(node_data) except json.JSONDecodeError: continue except Exception as e: print(f"Error loading graph: {e}") return [] return nodes def build_networkx_graph(nodes): """Build a NetworkX graph from the loaded node data.""" G = nx.Graph() # Add nodes with attributes for node in nodes: G.add_node( node['node_id'], label=node['label'], text=node['text'], mask=node['mask'] ) # Add edges for node in nodes: node_id = node['node_id'] for neighbor_id in node['neighbors']: if G.has_node(neighbor_id): # Only add edge if both nodes exist G.add_edge(node_id, neighbor_id) return G def analyze_graph_properties(G): """Analyze the properties of the graph as specified in the requirements.""" properties = {} # Mask distribution (Train/Validation/Test) masks = [G.nodes[n]['mask'] for n in G.nodes] mask_distribution = Counter(masks) properties['mask_distribution'] = {k: v/len(G.nodes) for k, v in mask_distribution.items()} # Label distribution labels = [G.nodes[n]['label'] for n in G.nodes] label_distribution = Counter(labels) properties['label_distribution'] = {k: v/len(G.nodes) for k, v in label_distribution.items()} # Graph density properties['density'] = nx.density(G) # Degree distribution degrees = [d for n, d in G.degree()] degree_counts = Counter(degrees) properties['degree_distribution'] = {k: v/len(G.nodes) for k, v in degree_counts.items()} # Community structure (using Louvain algorithm) try: communities = community_louvain.best_partition(G) community_counts = Counter(communities.values()) properties['community_distribution'] = {k: v/len(G.nodes) for k, v in community_counts.items()} except: properties['community_distribution'] = {} # Spectral characteristics if len(G) > 1: try: laplacian = nx.normalized_laplacian_matrix(G) if sp.issparse(laplacian) and laplacian.shape[0] > 1: try: k = min(5, laplacian.shape[0]-1) if k > 0: eigenvalues = eigsh(laplacian, k=k, which='SM', return_eigenvectors=False) properties['spectral_eigenvalues'] = sorted(eigenvalues.tolist()) else: properties['spectral_eigenvalues'] = [] except: properties['spectral_eigenvalues'] = [] else: properties['spectral_eigenvalues'] = [] except: properties['spectral_eigenvalues'] = [] else: properties['spectral_eigenvalues'] = [] # Connectivity characteristics properties['connected_components'] = nx.number_connected_components(G) largest_cc = max(nx.connected_components(G), key=len) properties['largest_cc_ratio'] = len(largest_cc) / len(G.nodes) return properties def sample_graph_preserving_properties(G, percentage, original_properties): """Sample a percentage of nodes while preserving graph properties.""" num_nodes = len(G.nodes) num_nodes_to_sample = max(1, int(num_nodes * percentage / 100)) # If the graph is too small, just return it if num_nodes <= num_nodes_to_sample: return G, {n: n for n in G.nodes} # 1. Preserve label and mask distribution (top priority per requirements) mask_label_groups = defaultdict(list) for node in G.nodes: mask = G.nodes[node]['mask'] label = G.nodes[node]['label'] mask_label_groups[(mask, label)].append(node) # Calculate how many nodes to sample from each mask-label group group_counts = {} for (mask, label), nodes in mask_label_groups.items(): mask_ratio = original_properties['mask_distribution'].get(mask, 0) label_ratio = original_properties['label_distribution'].get(label, 0) # Calculate joint probability joint_ratio = mask_ratio * label_ratio / sum( original_properties['mask_distribution'].get(m, 0) * original_properties['label_distribution'].get(l, 0) for m in original_properties['mask_distribution'] for l in original_properties['label_distribution'] ) target_count = int(num_nodes_to_sample * joint_ratio) # Ensure at least one node from non-empty groups group_counts[(mask, label)] = max(1, target_count) if nodes else 0 # Adjust to match the exact sample size total_count = sum(group_counts.values()) if total_count != num_nodes_to_sample: diff = num_nodes_to_sample - total_count groups = list(group_counts.keys()) if diff > 0: # Add nodes to groups proportionally to their size group_sizes = [len(mask_label_groups[g]) for g in groups] group_probs = [s/sum(group_sizes) for s in group_sizes] for _ in range(diff): group = random.choices(groups, weights=group_probs)[0] if len(mask_label_groups[group]) > group_counts[group]: group_counts[group] += 1 else: # Remove nodes from groups with excess groups_with_excess = [(g, c) for g, c in group_counts.items() if c > 1 and c > len(mask_label_groups[g]) * 0.2] groups_with_excess.sort(key=lambda x: x[1], reverse=True) for i in range(min(-diff, len(groups_with_excess))): group_counts[groups_with_excess[i][0]] -= 1 # 2. Sample nodes from each group, prioritizing connectivity and community structure sampled_nodes = [] # First try to get community structure try: communities = community_louvain.best_partition(G) except: communities = {node: 0 for node in G.nodes} # Fallback if community detection fails # Sample from each mask-label group for (mask, label), count in group_counts.items(): candidates = mask_label_groups[(mask, label)] if len(candidates) <= count: # Take all nodes in this group sampled_nodes.extend(candidates) else: # Score nodes based on degree and community representation node_scores = {} for node in candidates: # Higher score for higher degree nodes (connectivity) degree_score = G.degree(node) / max(1, max(d for n, d in G.degree())) # Higher score for nodes in underrepresented communities comm = communities.get(node, 0) comm_sampled = sum(1 for n in sampled_nodes if communities.get(n, -1) == comm) comm_total = sum(1 for n in G.nodes if communities.get(n, -1) == comm) comm_score = 1 - (comm_sampled / max(1, comm_total)) # Combined score (prioritize connectivity slightly more) node_scores[node] = 0.6 * degree_score + 0.4 * comm_score # Sort candidates by score and select the top ones sorted_candidates = sorted(candidates, key=lambda n: node_scores.get(n, 0), reverse=True) sampled_nodes.extend(sorted_candidates[:count]) # 3. Create the sampled subgraph sampled_G = G.subgraph(sampled_nodes).copy() # 4. Improve connectivity if needed if nx.number_connected_components(sampled_G) > original_properties['connected_components']: # Try to improve connectivity by swapping nodes non_sampled = [n for n in G.nodes if n not in sampled_nodes] # Calculate betweenness centrality for non-sampled nodes betweenness = {} for node in non_sampled: # Count how many different components this node would connect neighbors = list(G.neighbors(node)) sampled_neighbors = [n for n in neighbors if n in sampled_nodes] if not sampled_neighbors: continue components_connected = set() for n in sampled_neighbors: for comp_idx, comp in enumerate(nx.connected_components(sampled_G)): if n in comp: components_connected.add(comp_idx) break betweenness[node] = len(components_connected) # Sort non-sampled nodes by how many components they would connect connector_nodes = [(n, b) for n, b in betweenness.items() if b > 1] connector_nodes.sort(key=lambda x: x[1], reverse=True) # Try to improve connectivity by swapping nodes for connector, _ in connector_nodes: # Find a node to swap out (prefer low degree nodes from well-represented groups) mask = G.nodes[connector]['mask'] label = G.nodes[connector]['label'] # Find nodes with the same mask and label same_group = [n for n in sampled_nodes if G.nodes[n]['mask'] == mask and G.nodes[n]['label'] == label] if not same_group: continue # Sort by degree (ascending) same_group.sort(key=lambda n: sampled_G.degree(n)) # Swap the node with lowest degree to_remove = same_group[0] sampled_nodes.remove(to_remove) sampled_nodes.append(connector) # Update the sampled subgraph sampled_G = G.subgraph(sampled_nodes).copy() # Stop if we've reached the desired connectivity if nx.number_connected_components(sampled_G) <= original_properties['connected_components']: break # 5. Relabel nodes to have consecutive IDs starting from 0 node_mapping = {old_id: new_id for new_id, old_id in enumerate(sorted(sampled_nodes))} relabeled_G = nx.relabel_nodes(sampled_G, node_mapping) # Return the sampled graph and the inverse mapping (new_id -> original_id) inverse_mapping = {new_id: old_id for old_id, new_id in node_mapping.items()} return relabeled_G, inverse_mapping def graph_to_json_format(G): """Convert a NetworkX graph to the required JSON format.""" result = [] for node_id in sorted(G.nodes): node_data = { "node_id": int(node_id), "label": G.nodes[node_id]['label'], "text": G.nodes[node_id]['text'], "neighbors": sorted([int(n) for n in G.neighbors(node_id)]), "mask": G.nodes[node_id]['mask'] } result.append(node_data) return result def sample_text_attribute_graph(input_file, output_file, percentage): """Main function to sample a text attribute graph and preserve its properties.""" # Load the graph data print(f"Loading graph from {input_file}...") nodes = load_graph_from_json(input_file) if not nodes: print("Failed to load nodes from the input file.") return None, None, None print(f"Loaded {len(nodes)} nodes.") # Build the NetworkX graph print("Building graph...") G = build_networkx_graph(nodes) print(f"Built graph with {len(G.nodes)} nodes and {len(G.edges)} edges.") # Analyze the original graph properties print("Analyzing original graph properties...") original_properties = analyze_graph_properties(G) # Sample the graph print(f"Sampling {percentage}% of the nodes...") sampled_G, inverse_mapping = sample_graph_preserving_properties(G, percentage, original_properties) print(f"Sampled graph has {len(sampled_G.nodes)} nodes and {len(sampled_G.edges)} edges.") # Convert the sampled graph to JSON format print("Converting sampled graph to JSON format...") sampled_data = graph_to_json_format(sampled_G) # Save the sampled graph print(f"Saving sampled graph to {output_file}...") with open(output_file, 'w') as f: json.dump(sampled_data, f, indent=2) # Analyze the sampled graph properties print("Analyzing sampled graph properties...") sampled_properties = analyze_graph_properties(sampled_G) # Print comparison of original and sampled properties print("\nComparison of Graph Properties:") print(f"{'Property':<25} {'Original':<15} {'Sampled':<15}") print("-" * 55) print(f"{'Number of nodes':<25} {len(G.nodes):<15} {len(sampled_G.nodes):<15}") print(f"{'Number of edges':<25} {len(G.edges):<15} {len(sampled_G.edges):<15}") print(f"{'Density':<25} {original_properties['density']:.4f}{'':>10} {sampled_properties['density']:.4f}{'':>10}") print("\nMask Distribution:") print(f"{'Mask':<10} {'Original %':<15} {'Sampled %':<15}") print("-" * 40) for mask in sorted(set(original_properties['mask_distribution'].keys()) | set(sampled_properties['mask_distribution'].keys())): orig_pct = original_properties['mask_distribution'].get(mask, 0) * 100 sampled_pct = sampled_properties['mask_distribution'].get(mask, 0) * 100 print(f"{mask:<10} {orig_pct:.2f}%{'':>9} {sampled_pct:.2f}%{'':>9}") print("\nLabel Distribution:") print(f"{'Label':<10} {'Original %':<15} {'Sampled %':<15}") print("-" * 40) for label in sorted(set(original_properties['label_distribution'].keys()) | set(sampled_properties['label_distribution'].keys())): orig_pct = original_properties['label_distribution'].get(label, 0) * 100 sampled_pct = sampled_properties['label_distribution'].get(label, 0) * 100 print(f"{label:<10} {orig_pct:.2f}%{'':>9} {sampled_pct:.2f}%{'':>9}") print("\nConnectivity:") print(f"Connected components: {original_properties['connected_components']} (original) vs {sampled_properties['connected_components']} (sampled)") return sampled_G, original_properties, sampled_properties def main(): """Command-line interface.""" if len(sys.argv) != 4: print("Usage: python sample_graph.py input_file output_file percentage") sys.exit(1) input_file = sys.argv[1] output_file = sys.argv[2] try: percentage = float(sys.argv[3]) if percentage <= 0 or percentage > 100: raise ValueError("Percentage must be between 0 and 100") except ValueError: print("Error: Percentage must be a number between 0 and 100") sys.exit(1) sample_text_attribute_graph(input_file, output_file, percentage) if __name__ == "__main__": main()