import json import random path = r"C:\Code_Compiling\02_bit_Li\07_LLM4GDA\data\arxiv2023_label_16_10.json" # 读取reddit.json with open(path, 'r', encoding='utf-8') as f: data = json.load(f) # 统计每个label的节点个数 label_counts = {} for node in data: label = node['label'] if node['mask'] == 'Train': if label not in label_counts: label_counts[label] = 0 label_counts[label] += 1 # 输出每个label的节点个数 print("Train Label counts:", label_counts) # 获取用户输入的x和y x = int(input("Enter label value (x): ")) y = int(input("Enter number of nodes to keep (y): ")) # 先将所有mask为'train'且label为x的节点收集到一个列表中 train_x_nodes = [node for node in data if node['label'] == x and node['mask'] == 'Train'] # 确保train_x_nodes列表的长度至少为y if len(train_x_nodes) < y: print(f"Warning: There are fewer than {y} nodes with label {x} and mask 'train'. All {len(train_x_nodes)} nodes will be kept.") selected_nodes = train_x_nodes # 如果不足y个节点,则保留所有该label和mask条件的节点 else: # 随机选择y个节点 selected_nodes = random.sample(train_x_nodes, y) # 创建一个删除节点的集合 deleted_nodes = set(node['node_id'] for node in train_x_nodes if node not in selected_nodes) # 创建新数据列表,保留随机选择的label为x且mask为'train'的节点,其他节点不变 new_data = [] for node in data: # 保留所有的节点,mask非'train'的节点不做任何更改 if node['label'] != x or (node['mask'] != 'Train' or node in selected_nodes): new_data.append(node) # 遍历所有节点的neighbors,删除已经删除的节点 for node in new_data: if 'neighbors' in node: # 过滤掉已经删除的节点 node['neighbors'] = [neighbor for neighbor in node['neighbors'] if neighbor not in deleted_nodes] # 重新调整node_id,使其从0开始连续 id_mapping = {} new_node_id = 0 # 对new_data中的所有节点进行重排 for node in new_data: id_mapping[node['node_id']] = new_node_id node['node_id'] = new_node_id new_node_id += 1 # 更新所有节点的neighbors,使用新的node_id for node in new_data: if 'neighbors' in node: # 使用id_mapping更新neighbors中的node_id updated_neighbors = [] for neighbor in node['neighbors']: if neighbor in id_mapping: # 只更新存在id_mapping中的邻居 updated_neighbors.append(id_mapping[neighbor]) node['neighbors'] = updated_neighbors # 将修改后的数据保存为reddit_label:{x}_{y}.json output_filename = f"arxiv2023_label_{x}_{y}.json" with open(output_filename, 'w', encoding='utf-8') as f: json.dump(new_data, f, indent=4) print(f"Modified data saved to {output_filename}")