--- license: cc-by-4.0 dataset_info: features: - name: original_id dtype: int32 - name: edit_goal dtype: string - name: edit_type dtype: string - name: text dtype: string - name: food dtype: string - name: ambiance dtype: string - name: service dtype: string - name: noise dtype: string - name: counterfactual dtype: bool - name: rating dtype: int64 splits: - name: validation num_bytes: 306529 num_examples: 1673 - name: test num_bytes: 309751 num_examples: 1689 - name: train num_bytes: 2282439 num_examples: 11728 download_size: 628886 dataset_size: 2898719 task_categories: - text-classification language: - en --- # Dataset Card for "CEBaB" This is a lightly cleaned and simplified version of the CEBaB counterfactual restaurant review dataset from [this paper](https://arxiv.org/abs/2205.14140). The most important difference from the original dataset is that the `rating` column corresponds to the _median_ rating provided by the Mechanical Turkers, rather than the majority rating. These are the same whenever a majority rating exists, but when there is no majority rating (e.g. because there were two 1s, two 2s, and one 3), the original dataset used a `"no majority"` placeholder whereas we are able to provide an aggregate rating for all reviews. The exact code used to process the original dataset is provided below: ```py from ast import literal_eval from datasets import DatasetDict, Value, load_dataset def compute_median(x: str): """Compute the median rating given a multiset of ratings.""" # Decode the dictionary from string format dist = literal_eval(x) # Should be a dictionary whose keys are string-encoded integer ratings # and whose values are the number of times that the rating was observed assert isinstance(dist, dict) assert sum(dist.values()) % 2 == 1, "Number of ratings should be odd" ratings = [] for rating, count in dist.items(): ratings.extend([int(rating)] * count) ratings.sort() return ratings[len(ratings) // 2] cebab = load_dataset('CEBaB/CEBaB') assert isinstance(cebab, DatasetDict) # Remove redundant splits cebab['train'] = cebab.pop('train_inclusive') del cebab['train_exclusive'] del cebab['train_observational'] cebab = cebab.cast_column( 'original_id', Value('int32') ).map( lambda x: { # New column with inverted label for counterfactuals 'counterfactual': not x['is_original'], # Reduce the rating multiset into a single median rating 'rating': compute_median(x['review_label_distribution']) } ).map( # Replace the empty string and 'None' with Apache Arrow nulls lambda x: { k: v if v not in ('', 'no majority', 'None') else None for k, v in x.items() } ) # Sanity check that all the splits have the same columns cols = next(iter(cebab.values())).column_names assert all(split.column_names == cols for split in cebab.values()) # Clean up the names a bit cebab = cebab.rename_columns({ col: col.removesuffix('_majority').removesuffix('_aspect') for col in cols if col.endswith('_majority') }).rename_column( 'description', 'text' ) # Drop the unimportant columns cebab = cebab.remove_columns([ col for col in cols if col.endswith('_distribution') or col.endswith('_workers') ] + [ 'edit_id', 'edit_worker', 'id', 'is_original', 'opentable_metadata', 'review' ]).sort([ # Make sure counterfactual reviews come immediately after each original review 'original_id', 'counterfactual' ]) ```