#!/usr/bin/env python3 import argparse import json import os from datasets import load_dataset import openai from openai import OpenAI import pandas as pd from tqdm import tqdm # --- Functions --- def evaluate_item(client, item, model_name, model_params): system_prompt = item["system_prompt"] user_prompt = item["prompt"] answer = item["answer"] question_points = item["question_points"] uid = item["uid"] temperature = model_params['temperature'] max_tokens = model_params['max_tokens'] top_p = model_params['top_p'] seed = model_params['seed'] messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt} ] response = client.chat.completions.create( model=model_name, messages=messages, temperature=temperature, max_tokens=max_tokens, top_p=top_p, seed=seed ) model_output = response.choices[0].message.content.strip() # Check if output matches the expected answer eval_passed = model_output.strip() == answer.strip() token_usage = response.usage if hasattr(response, "usage") else {} finish_reason = response.choices[0].finish_reason result = { "data_source_id": uid, "item": item, "sample": { "trajectory": messages, "outputs": [{"role": "assistant", "content": model_output}], "finish_reason": finish_reason, "sampled_model_name": model_name, "sampled_model_params": {"seed": seed, "temperature": temperature, "max_tokens": max_tokens, "top_p": top_p}, "token_usage": dict(token_usage), }, "grades": {"String check": question_points if eval_passed else 0.0}, "grader_samples": {}, "passes": {"String check": eval_passed}, } return result def evaluate_data(client, data, results, model_name, model_params): """ Evaluates a list of items using the provided OpenAI client. """ results = {} if results is None else results with tqdm(data) as pbar: for row in pbar: uid = row['uid'] if results.get(uid): print(f"Skipping row with uid {uid} as it has already been evaluated.") continue try: result = evaluate_item(client, row, model_name, model_params) results[uid] = result pbar.set_description(f"Evaluated row with uid {uid}") except Exception as e: print(f"Error evaluating row: {e}") return results def get_grades(results, model_name): """ Returns a dictionary of grades for each test_id. """ grades = {'sampled_model_name': model_name} for key, item in results.items(): test_id = item['item']['test_id'] point = item['grades']['String check'] if test_id not in grades: grades[test_id] = {'points': 0, 'total': 0} grades[test_id]['points'] += int(point) grades[test_id]['total'] += 1 return grades def main(): parser = argparse.ArgumentParser(description="Evaluate dataset using an OpenAI client") parser.add_argument("--model_name", type=str, required=True, help="Model name to use (e.g., mistralai/mistral-small-3.1-24b-instruct)") parser.add_argument("--eval_subset", type=str, default="all", help="Evaluation subset (default: all)") parser.add_argument("--output_path", type=str, required=True, help="Path for saving the results") args = parser.parse_args() # Read API key from environment variable API_KEY = os.environ.get('OPEN_ROUTER_API_KEY') if API_KEY is None: print("Error: OPEN_ROUTER_API_KEY environment variable not set.") exit(1) EVAL_DATASET = "Ekgren/swedish_skolprov" EVAL_SUBSET = args.eval_subset MODEL_NAME = args.model_name model_params = {'temperature': 1, 'max_tokens': 2048, 'top_p': 1, 'seed': 42} # Load dataset ds = load_dataset(EVAL_DATASET, EVAL_SUBSET) ds = ds['train'] # Initialize client client = OpenAI( api_key=API_KEY, base_url="https://openrouter.ai/api/v1" ) results = evaluate_data(client, ds, None, MODEL_NAME, model_params) # Build file names file_name = EVAL_DATASET.replace("/", "-") + "_" + EVAL_SUBSET + "_" + MODEL_NAME.replace("/", "-") + ".jsonl" file_name = file_name.lower() grade_file_name = file_name.replace(".jsonl", "_grades.json") # Ensure output directory exists if not os.path.exists(args.output_path): os.makedirs(args.output_path) results_file_path = os.path.join(args.output_path, file_name) grade_file_path = os.path.join(args.output_path, grade_file_name) grades = get_grades(results, MODEL_NAME) print(grades) # Save results with open(results_file_path, "w", encoding="utf-8") as f: for key, item in results.items(): f.write(json.dumps(item) + "\n") # Save grades with open(grade_file_path, "w", encoding="utf-8") as f: f.write(json.dumps(grades) + "\n") if __name__ == "__main__": main()