import torch from torchtext.datasets import AG_NEWS from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator from torch.utils.data import DataLoader from torch.nn.utils.rnn import pad_sequence # Step 1: Download the dataset train_iter, test_iter = AG_NEWS(split=('train', 'test')) # Step 2: Tokenization tokenizer = get_tokenizer('basic_english') def yield_tokens(data_iter): for _, text in data_iter: yield tokenizer(text) # Step 3: Build Vocabulary vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=[""]) vocab.set_default_index(vocab[""]) # Step 4: Text pipeline to convert text to tensors def text_pipeline(x): return vocab(tokenizer(x)) # Label pipeline to convert labels to tensors def label_pipeline(x): return int(x) - 1 # Step 5: Collate function to combine the text and labels into batches def collate_batch(batch): label_list, text_list, lengths = [], [], [] for (_label, _text) in batch: label_list.append(label_pipeline(_label)) processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64) text_list.append(processed_text) lengths.append(len(processed_text)) label_list = torch.tensor(label_list, dtype=torch.int64) text_list = pad_sequence(text_list, padding_value=0) return label_list, text_list, lengths # Step 6: Prepare DataLoader train_iter, test_iter = AG_NEWS(split=('train', 'test')) # Reload iterators since we consumed them train_dataloader = DataLoader(list(train_iter), batch_size=8, shuffle=True, collate_fn=collate_batch) test_dataloader = DataLoader(list(test_iter), batch_size=8, shuffle=False, collate_fn=collate_batch) # Example usage: Iterate through the DataLoader # for labels, texts, lengths in train_dataloader: # print("Labels:", labels) # print("Texts:", texts) # print("Lengths:", lengths) # break