EagleWHLiang's picture
Upload 2013 files
e234437 verified
raw
history blame
6.88 kB
# import os
# import pandas as pd
# import numpy as np
# from sklearn.model_selection import train_test_split
# from sklearn.feature_extraction.text import TfidfVectorizer
# from sklearn.preprocessing import LabelEncoder
# # from torch.utils.data import DataLoader, TensorDataset
# from torch.utils.data import DataLoader, TensorDataset, WeightedRandomSampler
# import torch
# # Other imports remain the same
# def create_weighted_sampler(labels):
# class_counts = np.bincount(labels)
# class_weights = 1. / class_counts
# sample_weights = class_weights[labels]
# return sample_weights # Return sample weights, not the sampler
# # Function to read Finsen data
# def read_finsen_data(file_path):
# df = pd.read_csv(file_path)
# texts = df['Content'].tolist()
# labels = LabelEncoder().fit_transform(df['Category'])
# return texts, labels
# # Function to create train and validation DataLoaders
# def get_train_valid_loader(batch_size=128, valid_size=0.1, get_val_temp=0, random_seed=42, shuffle=True, num_workers=4, pin_memory=False):
# # texts, labels = read_finsen_data('./data/FinSen/finsen.csv')
# texts, labels = read_finsen_data('./adafocal-main/data/FinSen/finsen.csv')
# # Vectorize and split the dataset
# vectorizer = TfidfVectorizer(stop_words='english', max_features=2000)
# features = vectorizer.fit_transform(texts).toarray()
# X_train, X_val, y_train, y_val = train_test_split(features, labels, test_size=valid_size, random_state=random_seed)
# # Create weighted sampler for the training set to handle class imbalance
# train_weights = create_weighted_sampler(y_train)
# # train_sampler = WeightedRandomSampler(train_weights, len(train_weights))
# train_sampler = WeightedRandomSampler(weights=train_weights, num_samples=len(train_weights), replacement=True)
# # Convert to tensors and create DataLoaders
# train_dataset = TensorDataset(torch.tensor(X_train, dtype=torch.float32), torch.tensor(y_train, dtype=torch.long))
# val_dataset = TensorDataset(torch.tensor(X_val, dtype=torch.float32), torch.tensor(y_val, dtype=torch.long))
# # Use sampler for train_loader
# train_loader = DataLoader(train_dataset, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers, pin_memory=pin_memory)
# # Validation loader doesn't need weighted sampling
# val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory)
# return train_loader, val_loader
# # # Convert to tensors and create DataLoaders
# # train_dataset = TensorDataset(torch.tensor(X_train, dtype=torch.float32), torch.tensor(y_train, dtype=torch.long))
# # val_dataset = TensorDataset(torch.tensor(X_val, dtype=torch.float32), torch.tensor(y_val, dtype=torch.long))
# # train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory)
# # val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory)
# # return train_loader, val_loader
# # Function to create a test DataLoader
# def get_test_loader(batch_size=128, shuffle=True, num_workers=4, pin_memory=False):
# # texts, labels = read_finsen_data('./data/FinSen/finsen.csv') # Ensure this path is correct
# texts, labels = read_finsen_data('./adafocal-main/data/FinSen/finsen.csv')
# # Vectorize and split the dataset for test data
# vectorizer = TfidfVectorizer(stop_words='english', max_features=2000)
# features = vectorizer.fit_transform(texts).toarray()
# _, X_test, _, y_test = train_test_split(features, labels, test_size=0.2, random_state=42, shuffle=True)
# # Convert to tensors and create DataLoader
# test_dataset = TensorDataset(torch.tensor(X_test, dtype=torch.float32), torch.tensor(y_test, dtype=torch.long))
# test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory)
# return test_loader
import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder
from torch.utils.data import DataLoader, TensorDataset, WeightedRandomSampler
import torch
def create_weighted_sampler(labels):
class_counts = np.bincount(labels)
class_weights = 1. / class_counts
sample_weights = class_weights[labels]
weighted_sampler = WeightedRandomSampler(weights=sample_weights, num_samples=len(sample_weights), replacement=True)
return weighted_sampler
def read_finsen_data(file_path):
df = pd.read_csv(file_path)
texts = df['Content'].tolist()
labels = df['Category'].apply(lambda x: x.strip()).tolist() # Ensure labels are stripped of whitespace
label_encoder = LabelEncoder()
labels = label_encoder.fit_transform(labels)
return texts, labels, label_encoder.classes_
def prepare_data_loaders(texts, labels, batch_size, valid_size, random_seed, shuffle, num_workers, pin_memory):
vectorizer = TfidfVectorizer(stop_words='english', max_features=2000)
features = vectorizer.fit_transform(texts).toarray()
X_train, X_val_test, y_train, y_val_test = train_test_split(features, labels, test_size=valid_size + 0.1, random_state=random_seed) # Adjust valid_size + test_size
X_val, X_test, y_val, y_test = train_test_split(X_val_test, y_val_test, test_size=0.5, random_state=random_seed) # Split remaining data equally for val and test
train_sampler = create_weighted_sampler(y_train)
train_dataset = TensorDataset(torch.tensor(X_train, dtype=torch.float32), torch.tensor(y_train, dtype=torch.long))
val_dataset = TensorDataset(torch.tensor(X_val, dtype=torch.float32), torch.tensor(y_val, dtype=torch.long))
test_dataset = TensorDataset(torch.tensor(X_test, dtype=torch.float32), torch.tensor(y_test, dtype=torch.long))
train_loader = DataLoader(train_dataset, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers, pin_memory=pin_memory)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory)
return train_loader, val_loader, test_loader
def get_data_loaders(finsen_data_path, batch_size=128, valid_size=0.2, random_seed=42, shuffle=True, num_workers=4, pin_memory=False):
texts, labels, _ = read_finsen_data(finsen_data_path)
return prepare_data_loaders(texts, labels, batch_size, valid_size, random_seed, shuffle, num_workers, pin_memory)
# Now, train_loader, val_loader, and test_loader can be used in training and evaluation.