Datasets:
File size: 4,745 Bytes
0e23c8c bb475dc 0e23c8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
license: cc-by-4.0
task_categories:
- text-classification
- sentence-similarity
- feature-extraction
language:
- en
tags:
- biomedical
- scientific-literature
- pubmed
- pmc
- embeddings
- soda-vec
size_categories:
- 10M<n<100M
dataset_info:
features:
- name: pmid
dtype: string
- name: title
dtype: string
- name: abstract
dtype: string
- name: doi
dtype: string
splits:
- name: train
num_bytes: 39688553174
num_examples: 26473900
- name: validation
num_bytes: 74918135
num_examples: 50000
- name: test
num_bytes: 74931494
num_examples: 50000
download_size: 23525241784
dataset_size: 39838402803
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
# SODA-VEC Clean Dataset
This is a **cleaned and filtered version** of the SODA-VEC dataset, containing high-quality biomedical title-abstract pairs from PubMed Central (PMC) articles.
## Dataset Overview
- **Total examples**: 26,573,900
- **Training set**: 26,473,900 examples (99.6%)
- **Validation set**: 50,000 examples (0.2%)
- **Test set**: 50,000 examples (0.2%)
## Quality Filtering Applied
This dataset has been processed with the following quality filters:
### Abstract Length Filtering
- **Minimum length**: 128 characters
- **Maximum length**: 6,000 characters
- **Rationale**: Removes fragments and overly long texts while preserving scientific abstracts
### Retention Statistics
- **Original dataset**: ~26.6M examples
- **After filtering**: 26,573,900 examples
- **Retention rate**: ~99.7%
### Content Statistics (sample):
- **Title length**: ~100 ± 50 chars
- **Abstract length**: ~1,300 ± 600 chars
- **Title range**: 10-500 chars
- **Abstract range**: 128-6,000 chars
## Length Distributions

The dataset shows well-balanced length distributions:
- **Title lengths**: Centered around 100 characters with good variance
- **Abstract lengths**: Normally distributed around 1,300 characters
- **Quality filtering**: Clearly removes outliers while preserving natural variation

## Data Fields
Each example contains:
- **`title`** (string): The title of the scientific article
- **`abstract`** (string): The abstract of the scientific article
- **`pmcid`** (string): PubMed Central ID for the article
## Intended Use
This dataset is designed for:
### Primary Applications
- **Scientific text embeddings**: Training domain-specific embedding models
- **Biomedical NLP**: Fine-tuning language models on scientific literature
- **Semantic similarity**: Learning representations for scientific text matching
- **Information retrieval**: Building search systems for biomedical literature
### Research Applications
- Representation learning for scientific texts
- Cross-modal learning (title-abstract relationships)
- Domain adaptation for biomedical language models
- Evaluation of scientific text understanding systems
## Data Source & Methodology
### Original Dataset
Based on the SODA-VEC dataset from PubMed Central articles.
### Processing Pipeline
1. **Data loading**: Combined train/validation/test splits from original dataset
2. **Quality filtering**: Applied length-based filters to ensure high-quality pairs
3. **Split creation**: Created new balanced train/validation/test splits
4. **Validation**: Verified data integrity and distribution balance
### Quality Assurance
- Length distribution analysis
- Duplicate detection and removal
- Content quality validation
- Statistical validation of splits
## Usage Example
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("EMBO/soda-vec-data-full_pmc_title_abstract")
# Access different splits
train_data = dataset["train"]
val_data = dataset["validation"]
test_data = dataset["test"]
# Example usage
for example in train_data.take(1):
print(f"Title: {example['title']}")
print(f"Abstract: {example['abstract']}")
print(f"PMC ID: {example['pmcid']}")
```
## Citation
If you use this dataset in your research, please cite the original SODA-VEC paper:
```bibtex
@article{soda-vec-2024,
title={SODA-VEC: Training Vector Representations of Scientific Literature},
author={...},
journal={...},
year={2024}
}
```
## License
This dataset is released under the **CC-BY-4.0** license, consistent with PubMed Central's open access requirements.
## Contact
For questions about this dataset, please contact the EMBO team or open an issue in the dataset repository.
---
*Dataset processed with quality filters and balanced splits for optimal training performance.* |