Dragonjinny commited on
Commit
f3cc8f8
·
verified ·
1 Parent(s): 66c8d6c

Add Readme.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md CHANGED
@@ -1,4 +1,6 @@
1
  ---
 
 
2
  dataset_info:
3
  - config_name: FiFA-100k
4
  features:
@@ -353,3 +355,83 @@ configs:
353
  path: FiFA-5k/train-*
354
  default: true
355
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pretty_name: Pick-a-Pic v2 · FiFA Filtered
3
+ license: mit
4
  dataset_info:
5
  - config_name: FiFA-100k
6
  features:
 
355
  path: FiFA-5k/train-*
356
  default: true
357
  ---
358
+
359
+ # Pick-a-Pic v2 · **FiFA** Filtered Subsets
360
+
361
+ These subsets were produced by filtering the original [Pick-a-Pic v2 dataset](https://arxiv.org/abs/2305.01569) using **FiFA**, a data filtering algorithm proposed in the paper [*Automated Filtering of Human Feedback Data for Aligning Text-to-Image Diffusion Models*](https://arxiv.org/abs/2410.10166).
362
+
363
+ ## Overview
364
+
365
+ The filtering process is based on three key metrics:
366
+
367
+ 1. **Preference Margin**: Estimated using [PickScore](https://huggingface.co/yuvalkirstain/PickScore_v1)
368
+ 2. **Text Quality**: Estimated through LLM scoring
369
+ 3. **Text Diversity**: Estimated using K-NN distance
370
+
371
+ ## Dataset Configurations
372
+
373
+ | Configuration | Size | Description |
374
+ |---------------|------|-------------|
375
+ | `FiFA-500` | 500 triplets | Small subset for quick experiments |
376
+ | `FiFA-1k` | 1,000 triplets | Lightweight training set |
377
+ | `FiFA-5k` | 5,000 triplets | Medium-sized training set |
378
+ | `FiFA-10k` | 10,000 triplets | Standard training set |
379
+ | `FiFA-20k` | 20,000 triplets | Large training set |
380
+ | `FiFA-50k` | 50,000 triplets | Extended training set |
381
+ | `FiFA-100k` | 100,000 triplets | Full-scale training set |
382
+
383
+ ## Quick Start
384
+
385
+ ```python
386
+ from datasets import load_dataset
387
+
388
+ # Load a specific configuration
389
+ dataset = load_dataset("Dragonjinny/FiFA-pickapic-v2", "FiFA-5k", split="train")
390
+
391
+ # Access the data
392
+ import io
393
+ from PIL import Image
394
+
395
+ for example in dataset:
396
+ caption = example["caption"] # The prompt text
397
+ jpg_0 = example["jpg_0"] # First image (bytes)
398
+ jpg_1 = example["jpg_1"] # Second image (bytes)
399
+ label_0 = example["label_0"] # Binary label (0 or 1) indicating which image is preferred
400
+
401
+ # Convert bytes to PIL Images
402
+ image1 = Image.open(io.BytesIO(jpg_0)).convert("RGB")
403
+ image2 = Image.open(io.BytesIO(jpg_1)).convert("RGB")
404
+
405
+ # Now you can work with the images
406
+ print(f"Caption: {caption}")
407
+ print(f"Preferred image: {'jpg_0' if label_0 == 1 else 'jpg_1'}")
408
+ # image1.show() # Display the first image
409
+ # image2.show() # Display the second image
410
+ ```
411
+
412
+ ## Data Format
413
+
414
+ Each example contains:
415
+ - `caption`: The prompt text
416
+ - `jpg_0`: First image (bytes)
417
+ - `jpg_1`: Second image (bytes)
418
+ - `label_0`: Binary label (0 or 1) indicating which image is preferred
419
+
420
+ ## Citation
421
+
422
+ If you use this dataset in your research, please cite our paper:
423
+
424
+ ```bibtex
425
+ @inproceedings{
426
+ yang2025automated,
427
+ title={Automated Filtering of Human Feedback Data for Aligning Text-to-Image Diffusion Models},
428
+ author={Yongjin Yang and Sihyeon Kim and Hojung Jung and Sangmin Bae and SangMook Kim and Se-Young Yun and Kimin Lee},
429
+ booktitle={The Thirteenth International Conference on Learning Representations},
430
+ year={2025},
431
+ url={https://openreview.net/forum?id=8jvVNPHtVJ}
432
+ }
433
+ ```
434
+
435
+ ## License
436
+
437
+ This dataset is licensed under [MIT License](https://opensource.org/licenses/MIT), following the license of the original Pick-a-Pic v2 dataset.