Update PxCorpus.py
Browse files- PxCorpus.py +115 -124
PxCorpus.py
CHANGED
|
@@ -1,179 +1,170 @@
|
|
| 1 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import os
|
| 4 |
-
import
|
|
|
|
| 5 |
|
| 6 |
import datasets
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
from syntok.tokenizer import Tokenizer
|
| 11 |
-
|
| 12 |
-
tokenizer = Tokenizer()
|
| 13 |
-
|
| 14 |
-
_CITATION = """\
|
| 15 |
-
@InProceedings{Kocabiyikoglu2022,
|
| 16 |
-
author = "Alican Kocabiyikoglu and Fran{\c c}ois Portet and Prudence Gibert and Hervé Blanchon and Jean-Marc Babouchkine and Gaëtan Gavazzi",
|
| 17 |
-
title = "A Spoken Drug Prescription Dataset in French for Spoken Language Understanding",
|
| 18 |
-
booktitle = "13th Language Resources and Evaluation Conference (LREC 2022)",
|
| 19 |
-
year = "2022",
|
| 20 |
-
location = "Marseille, France"
|
| 21 |
-
}
|
| 22 |
"""
|
| 23 |
|
| 24 |
-
|
| 25 |
-
PxSLU is to the best of our knowledge, the first spoken medical drug prescriptions corpus to be distributed. It contains 4 hours of transcribed
|
| 26 |
-
and annotated dialogues of drug prescriptions in French acquired through an experiment with 55 participants experts and non-experts in drug prescriptions.
|
| 27 |
|
| 28 |
-
|
| 29 |
-
protocol was reviewed by medical experts and permit free distribution without breach of privacy and regulation.
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
The experiment has been performed in wild conditions with naive participants and medical experts. In total, the dataset includes 1981 recordings
|
| 34 |
-
of 55 participants (38% non-experts, 25% doctors, 36% medical practitioners), manually transcribed and semantically annotated.
|
| 35 |
"""
|
| 36 |
|
| 37 |
-
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
|
| 41 |
BUILDER_CONFIGS = [
|
| 42 |
-
datasets.BuilderConfig(name=f"default", version="1.0.0", description=f"
|
| 43 |
]
|
| 44 |
|
| 45 |
DEFAULT_CONFIG_NAME = "default"
|
| 46 |
|
| 47 |
def _info(self):
|
| 48 |
-
|
| 49 |
features = datasets.Features(
|
| 50 |
{
|
| 51 |
-
"
|
| 52 |
-
"
|
| 53 |
-
"
|
| 54 |
-
|
|
|
|
|
|
|
| 55 |
),
|
| 56 |
-
"
|
| 57 |
-
|
| 58 |
-
datasets.features.ClassLabel(
|
| 59 |
-
names=['O', 'B-A', 'B-cma_event', 'B-d_dos_form', 'B-d_dos_form_ext', 'B-d_dos_up', 'B-d_dos_val', 'B-dos_cond', 'B-dos_uf', 'B-dos_val', 'B-drug', 'B-dur_ut', 'B-dur_val', 'B-fasting', 'B-freq_days', 'B-freq_int_v1', 'B-freq_int_v1_ut', 'B-freq_int_v2', 'B-freq_int_v2_ut', 'B-freq_startday', 'B-freq_ut', 'B-freq_val', 'B-inn', 'B-max_unit_uf', 'B-max_unit_ut', 'B-max_unit_val', 'B-min_gap_ut', 'B-min_gap_val', 'B-qsp_ut', 'B-qsp_val', 'B-re_ut', 'B-re_val', 'B-rhythm_hour', 'B-rhythm_perday', 'B-rhythm_rec_ut', 'B-rhythm_rec_val', 'B-rhythm_tdte', 'B-roa', 'I-cma_event', 'I-d_dos_form', 'I-d_dos_form_ext', 'I-d_dos_up', 'I-d_dos_val', 'I-dos_cond', 'I-dos_uf', 'I-dos_val', 'I-drug', 'I-fasting', 'I-freq_startday', 'I-inn', 'I-rhythm_tdte', 'I-roa'],
|
| 60 |
-
),
|
| 61 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
}
|
| 63 |
)
|
| 64 |
|
| 65 |
return datasets.DatasetInfo(
|
| 66 |
description=_DESCRIPTION,
|
| 67 |
features=features,
|
|
|
|
|
|
|
| 68 |
citation=_CITATION,
|
| 69 |
-
supervised_keys=None,
|
| 70 |
)
|
| 71 |
|
| 72 |
def _split_generators(self, dl_manager):
|
|
|
|
| 73 |
|
| 74 |
data_dir = dl_manager.download_and_extract(_URL)
|
| 75 |
-
|
| 76 |
print(data_dir)
|
| 77 |
-
|
|
|
|
| 78 |
return [
|
| 79 |
datasets.SplitGenerator(
|
| 80 |
name=datasets.Split.TRAIN,
|
| 81 |
gen_kwargs={
|
| 82 |
-
"
|
| 83 |
-
"
|
| 84 |
-
"filepath_3": os.path.join(data_dir, "PxSLU_conll.txt"),
|
| 85 |
-
"split": "train",
|
| 86 |
},
|
| 87 |
),
|
| 88 |
datasets.SplitGenerator(
|
| 89 |
name=datasets.Split.VALIDATION,
|
| 90 |
gen_kwargs={
|
| 91 |
-
"
|
| 92 |
-
"
|
| 93 |
-
"filepath_3": os.path.join(data_dir, "PxSLU_conll.txt"),
|
| 94 |
-
"split": "validation",
|
| 95 |
},
|
| 96 |
),
|
| 97 |
datasets.SplitGenerator(
|
| 98 |
name=datasets.Split.TEST,
|
| 99 |
gen_kwargs={
|
| 100 |
-
"
|
| 101 |
-
"
|
| 102 |
-
"filepath_3": os.path.join(data_dir, "PxSLU_conll.txt"),
|
| 103 |
-
"split": "test",
|
| 104 |
},
|
| 105 |
),
|
| 106 |
]
|
| 107 |
|
| 108 |
-
def
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
f_in_ner = open(filepath_3, "r")
|
| 138 |
-
docs = f_in_ner.read().split("\n\n")
|
| 139 |
-
f_in_ner.close()
|
| 140 |
-
|
| 141 |
-
for idx, doc in enumerate(docs):
|
| 142 |
-
|
| 143 |
-
text = seq_in[idx]
|
| 144 |
-
label = seq_label[idx]
|
| 145 |
-
|
| 146 |
-
tokens, ner_tags = self.getTokenTags(docs[idx])
|
| 147 |
-
|
| 148 |
-
if len(text) <= 0 or len(label) <= 0:
|
| 149 |
-
continue
|
| 150 |
-
|
| 151 |
-
all_res.append({
|
| 152 |
-
"id": key,
|
| 153 |
-
"text": text,
|
| 154 |
-
"label": label,
|
| 155 |
-
"tokens": tokens,
|
| 156 |
-
"ner_tags": ner_tags,
|
| 157 |
-
})
|
| 158 |
-
|
| 159 |
-
key += 1
|
| 160 |
-
|
| 161 |
-
ids = [r["id"] for r in all_res]
|
| 162 |
-
|
| 163 |
-
random.seed(4)
|
| 164 |
-
random.shuffle(ids)
|
| 165 |
-
random.shuffle(ids)
|
| 166 |
-
random.shuffle(ids)
|
| 167 |
-
|
| 168 |
-
train, validation, test = np.split(ids, [int(len(ids)*0.70), int(len(ids)*0.80)])
|
| 169 |
-
|
| 170 |
-
if split == "train":
|
| 171 |
-
allowed_ids = list(train)
|
| 172 |
-
elif split == "validation":
|
| 173 |
-
allowed_ids = list(validation)
|
| 174 |
-
elif split == "test":
|
| 175 |
-
allowed_ids = list(test)
|
| 176 |
-
|
| 177 |
-
for r in all_res:
|
| 178 |
-
if r["id"] in allowed_ids:
|
| 179 |
-
yield r["id"], r
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""DIAMED"""
|
| 16 |
|
| 17 |
import os
|
| 18 |
+
import json
|
| 19 |
+
import math
|
| 20 |
|
| 21 |
import datasets
|
| 22 |
|
| 23 |
+
_DESCRIPTION = """\
|
| 24 |
+
DIAMED
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
"""
|
| 26 |
|
| 27 |
+
_HOMEPAGE = ""
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
_LICENSE = "Apache License 2.0"
|
|
|
|
| 30 |
|
| 31 |
+
_URL = "https://huggingface.co/datasets/Dr-BERT/DiaMED/resolve/main/data.zip"
|
| 32 |
+
|
| 33 |
+
_CITATION = """\
|
| 34 |
|
|
|
|
|
|
|
| 35 |
"""
|
| 36 |
|
| 37 |
+
class DiaMed(datasets.GeneratorBasedBuilder):
|
| 38 |
+
"""DIAMED"""
|
| 39 |
|
| 40 |
+
VERSION = datasets.Version("1.0.0")
|
| 41 |
|
| 42 |
BUILDER_CONFIGS = [
|
| 43 |
+
datasets.BuilderConfig(name=f"default", version="1.0.0", description=f"DiaMED data"),
|
| 44 |
]
|
| 45 |
|
| 46 |
DEFAULT_CONFIG_NAME = "default"
|
| 47 |
|
| 48 |
def _info(self):
|
| 49 |
+
|
| 50 |
features = datasets.Features(
|
| 51 |
{
|
| 52 |
+
"identifier": datasets.Value("string"),
|
| 53 |
+
"title": datasets.Value("string"),
|
| 54 |
+
"clinical_case": datasets.Value("string"),
|
| 55 |
+
"topic": datasets.Value("string"),
|
| 56 |
+
"keywords": datasets.Sequence(
|
| 57 |
+
datasets.Value("string"),
|
| 58 |
),
|
| 59 |
+
"domains": datasets.Sequence(
|
| 60 |
+
datasets.Value("string"),
|
|
|
|
|
|
|
|
|
|
| 61 |
),
|
| 62 |
+
"collected_at": datasets.Value("string"),
|
| 63 |
+
"published_at": datasets.Value("string"),
|
| 64 |
+
"source_url": datasets.Value("string"),
|
| 65 |
+
"source_name": datasets.Value("string"),
|
| 66 |
+
"license": datasets.Value("string"),
|
| 67 |
+
"figures_urls": datasets.Sequence(
|
| 68 |
+
datasets.Value("string"),
|
| 69 |
+
),
|
| 70 |
+
"figures_paths": datasets.Sequence(
|
| 71 |
+
datasets.Value("string"),
|
| 72 |
+
),
|
| 73 |
+
"figures": datasets.Sequence(
|
| 74 |
+
datasets.Image(),
|
| 75 |
+
),
|
| 76 |
+
"icd-10": datasets.features.ClassLabel(names=[
|
| 77 |
+
'A00-B99 Certain infectious and parasitic diseases',
|
| 78 |
+
'C00-D49 Neoplasms',
|
| 79 |
+
'D50-D89 Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism',
|
| 80 |
+
'E00-E89 Endocrine, nutritional and metabolic diseases',
|
| 81 |
+
'F01-F99 Mental, Behavioral and Neurodevelopmental disorders',
|
| 82 |
+
'G00-G99 Diseases of the nervous system',
|
| 83 |
+
'H00-H59 Diseases of the eye and adnexa',
|
| 84 |
+
'H60-H95 Diseases of the ear and mastoid process',
|
| 85 |
+
'I00-I99 Diseases of the circulatory system',
|
| 86 |
+
'J00-J99 Diseases of the respiratory system',
|
| 87 |
+
'K00-K95 Diseases of the digestive system',
|
| 88 |
+
'L00-L99 Diseases of the skin and subcutaneous tissue',
|
| 89 |
+
'M00-M99 Diseases of the musculoskeletal system and connective tissue',
|
| 90 |
+
'N00-N99 Diseases of the genitourinary system',
|
| 91 |
+
'O00-O9A Pregnancy, childbirth and the puerperium',
|
| 92 |
+
'P00-P96 Certain conditions originating in the perinatal period',
|
| 93 |
+
'Q00-Q99 Congenital malformations, deformations and chromosomal abnormalities',
|
| 94 |
+
'R00-R99 Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified',
|
| 95 |
+
'S00-T88 Injury, poisoning and certain other consequences of external causes',
|
| 96 |
+
'U00-U85 Codes for special purposes',
|
| 97 |
+
'V00-Y99 External causes of morbidity',
|
| 98 |
+
'Z00-Z99 Factors influencing health status and contact with health services',
|
| 99 |
+
]),
|
| 100 |
}
|
| 101 |
)
|
| 102 |
|
| 103 |
return datasets.DatasetInfo(
|
| 104 |
description=_DESCRIPTION,
|
| 105 |
features=features,
|
| 106 |
+
homepage=_HOMEPAGE,
|
| 107 |
+
license=_LICENSE,
|
| 108 |
citation=_CITATION,
|
|
|
|
| 109 |
)
|
| 110 |
|
| 111 |
def _split_generators(self, dl_manager):
|
| 112 |
+
"""Returns SplitGenerators."""
|
| 113 |
|
| 114 |
data_dir = dl_manager.download_and_extract(_URL)
|
| 115 |
+
print("#"*50)
|
| 116 |
print(data_dir)
|
| 117 |
+
# data_dir = "./splits/"
|
| 118 |
+
|
| 119 |
return [
|
| 120 |
datasets.SplitGenerator(
|
| 121 |
name=datasets.Split.TRAIN,
|
| 122 |
gen_kwargs={
|
| 123 |
+
"base_path": data_dir,
|
| 124 |
+
"filepath": data_dir + "/splits/train.json",
|
|
|
|
|
|
|
| 125 |
},
|
| 126 |
),
|
| 127 |
datasets.SplitGenerator(
|
| 128 |
name=datasets.Split.VALIDATION,
|
| 129 |
gen_kwargs={
|
| 130 |
+
"base_path": data_dir,
|
| 131 |
+
"filepath": data_dir + "/splits/validation.json",
|
|
|
|
|
|
|
| 132 |
},
|
| 133 |
),
|
| 134 |
datasets.SplitGenerator(
|
| 135 |
name=datasets.Split.TEST,
|
| 136 |
gen_kwargs={
|
| 137 |
+
"base_path": data_dir,
|
| 138 |
+
"filepath": data_dir + "/splits/test.json",
|
|
|
|
|
|
|
| 139 |
},
|
| 140 |
),
|
| 141 |
]
|
| 142 |
|
| 143 |
+
def _generate_examples(self, base_path, filepath):
|
| 144 |
+
|
| 145 |
+
with open(filepath, encoding="utf-8") as f:
|
| 146 |
+
|
| 147 |
+
data = json.load(f)
|
| 148 |
+
|
| 149 |
+
for key, d in enumerate(data):
|
| 150 |
+
|
| 151 |
+
if str(d["icd-10"]) == "nan" or d["icd-10"].find("Plusieurs cas cliniques") != -1 or d["icd-10"].find("Aucune annotation") != -1:
|
| 152 |
+
continue
|
| 153 |
+
|
| 154 |
+
yield key, {
|
| 155 |
+
"identifier": d["identifier"],
|
| 156 |
+
"title": d["title"],
|
| 157 |
+
"clinical_case": d["clinical_case"],
|
| 158 |
+
"topic": d["topic"],
|
| 159 |
+
"keywords": d["keywords"],
|
| 160 |
+
"domains": d["domain"],
|
| 161 |
+
"collected_at": d["collected_at"],
|
| 162 |
+
"published_at": d["published_at"],
|
| 163 |
+
"source_url": d["source_url"],
|
| 164 |
+
"source_name": d["source_name"],
|
| 165 |
+
"license": d["license"],
|
| 166 |
+
"figures_urls": d["figures"],
|
| 167 |
+
"figures": [base_path + fg.lstrip(".") for fg in d["local_figures"]],
|
| 168 |
+
"figures_paths": [base_path + fg.lstrip(".") for fg in d["local_figures"]],
|
| 169 |
+
"icd-10": d["icd-10"],
|
| 170 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|