Configs / dan-chat-advanced.py
Delta-Vector's picture
Upload dan-chat-advanced.py
9a62b29 verified
"""Module containing the PygmalionPromptTokenizingStrategy and PygmalionPrompter class"""
import copy
import logging
from collections import defaultdict
from typing import Generator, List, Tuple, Dict
from axolotl.prompt_tokenizers import (
PromptTokenizingStrategy,
parse_tokenized_to_result,
tokenize_prompt_default,
)
LOG = logging.getLogger("axolotl")
IGNORE_TOKEN_ID = -100
turn_separator = "\n"
system_prefix = "<|im_start|>system\n"
user_prefix = "<|im_start|>user\n"
assistant_prefix = "<|im_start|>assistant\n"
class DanChatMLPromptTokenizingStrategy(PromptTokenizingStrategy):
def __init__(self, prompter, tokenizer, train_on_inputs, sequence_len, *args, **kwargs):
super().__init__(prompter, tokenizer, *args, **kwargs)
res = self._tokenize(assistant_prefix, add_eos_token=False, strip_bos_token=True)
self.bot_prefix_token_ids = res["input_ids"]
res = self._tokenize(turn_separator, add_eos_token=False, strip_bos_token=True)
self.turn_separator_token_ids = res["input_ids"]
self.train_on_inputs = train_on_inputs
self.sequence_len = sequence_len
def tokenize_prompt(self, prompt):
prompt_parts = list(self.prompter.build_prompt(prompt["conversations"]))
tokenized_parts = []
total_length = 0
not_first_turn = False
for role, message, loss, prefix in prompt_parts:
prefix = prefix or ""
message = prefix + message
if role in ["system", "user", "human"]:
role_prefix = system_prefix if role == "system" else user_prefix
res = self._tokenize_with_turn(role_prefix, message, not_first_turn)
labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
elif role in ["model", "gpt"]:
if not prefix:
res = self._tokenize_with_turn(assistant_prefix, message, not_first_turn)
labels = self._get_labels(res, loss, not_first_turn)
else:
res_prefix = self._tokenize_with_turn(assistant_prefix, prefix, not_first_turn, add_eos_token=False)
labels_prefix = [IGNORE_TOKEN_ID] * len(res_prefix["input_ids"])
res_message = self._tokenize(message.rstrip(), add_eos_token=True, strip_bos_token=True)
labels_message = [*copy.deepcopy(res_message["input_ids"])] if loss else [IGNORE_TOKEN_ID] * len(res_message["input_ids"])
res = {
"input_ids": res_prefix["input_ids"] + res_message["input_ids"],
"attention_mask": res_prefix["attention_mask"] + res_message["attention_mask"]
}
labels = labels_prefix + labels_message
else:
LOG.warning(f"unknown role in conversation: {role}")
continue
part_length = len(res["input_ids"])
if total_length + part_length > self.sequence_len:
break
tokenized_parts.append({
"input_ids": res["input_ids"],
"attention_mask": res["attention_mask"],
"labels": labels,
"role": role,
"loss": loss
})
total_length += part_length
not_first_turn = True
result = {
"input_ids": [],
"attention_mask": [],
"labels": []
}
# Check if the last turn is a human/user/system turn or loss = False
while tokenized_parts and (tokenized_parts[-1]["role"] in ["human", "user", "system"] or not tokenized_parts[-1]["loss"]):
tokenized_parts.pop()
# Ensure we have at least one user/human/system turn, if not return
if not any(part["role"] in ["human", "user", "system"] for part in tokenized_parts):
return result
# Ensure we have at least one gpt/model turn, if not return
if not any(part["role"] in ["model", "gpt"] for part in tokenized_parts):
return result
# Concatenate the final result
for part in tokenized_parts:
result["input_ids"] += part["input_ids"]
result["attention_mask"] += part["attention_mask"]
result["labels"] += part["labels"]
return result
def _tokenize_with_turn(self, role_prefix, message, not_first_turn, add_eos_token=True):
full_message = (turn_separator if not_first_turn else "") + role_prefix + message.strip()
return self._tokenize(full_message, add_eos_token=add_eos_token, strip_bos_token=not_first_turn)
def _get_labels(self, res, loss, not_first_turn):
if not loss:
return [IGNORE_TOKEN_ID] * len(res["input_ids"])
prefix_len = len(self.bot_prefix_token_ids + (self.turn_separator_token_ids if not_first_turn else []))
return [IGNORE_TOKEN_ID] * prefix_len + [*copy.deepcopy(res["input_ids"])][prefix_len:]
class DanChatMLPrompter:
"""
Prompter for DanChatML.
"""
def __init__(self, *args, **kwargs):
pass
def build_prompt(self, source, *args, **kwargs) -> Generator[Tuple[str, str, bool, str], None, None]:
for msg in source:
from_value = msg["from"]
message_value = msg["value"]
# Set loss based on the message source
loss = msg.get("loss")
if loss is None:
loss = True if from_value in ["gpt", "model"] else None
# Set prefix, defaulting to an empty string if not present
prefix = msg.get("prefix", "")
yield from_value, message_value, loss, prefix
def load(tokenizer, cfg):
return DanChatMLPromptTokenizingStrategy(DanChatMLPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)