File size: 9,582 Bytes
027f814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# -*- coding: utf-8 -*-
"""Gemma3_(4B).ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma3_(4B).ipynb

To run this, press "*Runtime*" and press "*Run all*" on a **free** Tesla T4 Google Colab instance!
<div class="align-center">
<a href="https://unsloth.ai/"><img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="115"></a>
<a href="https://discord.gg/unsloth"><img src="https://github.com/unslothai/unsloth/raw/main/images/Discord button.png" width="145"></a>
<a href="https://docs.unsloth.ai/"><img src="https://github.com/unslothai/unsloth/blob/main/images/documentation%20green%20button.png?raw=true" width="125"></a></a> Join Discord if you need help + ⭐ <i>Star us on <a href="https://github.com/unslothai/unsloth">Github</a> </i> ⭐
</div>

To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://docs.unsloth.ai/get-started/installing-+-updating).

You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save)

### News

**Read our [Gemma 3 blog](https://unsloth.ai/blog/gemma3) for what's new in Unsloth and our [Reasoning blog](https://unsloth.ai/blog/r1-reasoning) on how to train reasoning models.**

Visit our docs for all our [model uploads](https://docs.unsloth.ai/get-started/all-our-models) and [notebooks](https://docs.unsloth.ai/get-started/unsloth-notebooks).

### Installation
"""

# Commented out IPython magic to ensure Python compatibility.
# %%capture
# import os
# if "COLAB_" not in "".join(os.environ.keys()):
#     !pip install unsloth
# else:
#     # Do this only in Colab notebooks! Otherwise use pip install unsloth
#     !pip install --no-deps bitsandbytes accelerate xformers==0.0.29.post3 peft trl triton cut_cross_entropy unsloth_zoo
#     !pip install sentencepiece protobuf datasets huggingface_hub hf_transfer
#     !pip install --no-deps unsloth
# # Install latest Hugging Face for Gemma-3!
# !pip install --no-deps git+https://github.com/huggingface/transformers@v4.49.0-Gemma-3

"""### Unsloth

`FastModel` supports loading nearly any model now! This includes Vision and Text models!
"""

from unsloth import FastModel
import torch

fourbit_models = [
    # 4bit dynamic quants for superior accuracy and low memory use
    "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
    "unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
    "unsloth/gemma-3-12b-it-unsloth-bnb-4bit",
    "unsloth/gemma-3-27b-it-unsloth-bnb-4bit",

    # Other popular models!
    "unsloth/Llama-3.1-8B",
    "unsloth/Llama-3.2-3B",
    "unsloth/Llama-3.3-70B",
    "unsloth/mistral-7b-instruct-v0.3",
    "unsloth/Phi-4",
] # More models at https://huggingface.co/unsloth

model, tokenizer = FastModel.from_pretrained(
    model_name = "unsloth/gemma-3-4b-it",
    max_seq_length = 8192, # Choose any for long context!
    load_in_4bit = False,  # 4 bit quantization to reduce memory
    load_in_8bit = False, # [NEW!] A bit more accurate, uses 2x memory
    full_finetuning = True, # [NEW!] We have full finetuning now!
    # token = "hf_...", # use one if using gated models
)

"""We now add LoRA adapters so we only need to update a small amount of parameters!"""

model = FastModel.get_peft_model(
    model,
    finetune_vision_layers     = False, # Turn off for just text!
    finetune_language_layers   = True,  # Should leave on!
    finetune_attention_modules = True,  # Attention good for GRPO
    finetune_mlp_modules       = True,  # SHould leave on always!

    r = 64,           # Larger = higher accuracy, but might overfit
    lora_alpha = 32,  # Recommended alpha == r at least
    lora_dropout = 0.1,
    bias = "none",
    random_state = 3407,
)

"""<a name="Data"></a>
### Data Prep
We now use the `Gemma-3` format for conversation style finetunes. We use [Maxime Labonne's FineTome-100k](https://huggingface.co/datasets/mlabonne/FineTome-100k) dataset in ShareGPT style. Gemma-3 renders multi turn conversations like below:

```
<bos><start_of_turn>user
Hello!<end_of_turn>
<start_of_turn>model
Hey there!<end_of_turn>
```

We use our `get_chat_template` function to get the correct chat template. We support `zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, phi3, llama3, phi4, qwen2.5, gemma3` and more.
"""

from unsloth.chat_templates import get_chat_template
tokenizer = get_chat_template(
    tokenizer,
    chat_template = "gemma-3",
)
from datasets import load_dataset
dataset = load_dataset("FourOhFour/RP_Phase", split = "train")

"""We now use `standardize_data_formats` to try converting datasets to the correct format for finetuning purposes!"""
from unsloth.chat_templates import standardize_data_formats
dataset = standardize_data_formats(dataset)

"""Let's see how row 100 looks like!"""
dataset[100]

"""We validate and fix conversations to ensure proper role alternation"""
def validate_and_fix_conversations(examples):
    valid_convs = []
    for conv in examples["conversations"]:
        # Check if roles alternate properly
        prev_role = None
        
        # Clean up the conversation to ensure proper alternation
        fixed_conv = []
        for turn in conv:
            role = turn.get("role", "").lower()
            # Skip if same role appears consecutively
            if role == prev_role:
                continue
            # Normalize roles to expected format
            if role in ["assistant", "bot", "chatbot"]:
                role = "model"
            elif role in ["human", "usr"]:
                role = "user"
            
            fixed_conv.append({"role": role, "content": turn.get("content", "")})
            prev_role = role
            
        # Ensure it starts with user and alternates correctly
        if fixed_conv and fixed_conv[0]["role"] == "user":
            valid_convs.append(fixed_conv)
    
    return {"conversations": valid_convs}

# Apply the validation and fixing step
dataset = dataset.map(validate_and_fix_conversations, batched=True)

"""We now have to apply the chat template for `Gemma-3` onto the conversations, and save it to `text`"""
def apply_chat_template(examples):
    texts = tokenizer.apply_chat_template(examples["conversations"])
    return { "text" : texts }

dataset = dataset.map(apply_chat_template, batched = True)

"""Let's see how the chat template did! Notice `Gemma-3` default adds a `<bos>`!"""
dataset[100]["text"]

"""<a name="Train"></a>
### Train the model
Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`.
"""

from trl import SFTTrainer, SFTConfig
trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset = dataset,
    eval_dataset = None, # Can set up evaluation!
    args = SFTConfig(
        dataset_text_field = "text",
        per_device_train_batch_size = 2,
        gradient_accumulation_steps = 4, # Use GA to mimic batch size!
        warmup_steps = 35,
        num_train_epochs = 2, # Set this for 1 full training run.
        learning_rate = 1e-5, # Reduce to 2e-5 for long training runs
        logging_steps = 1,
        optim = "paged_adamw_8bit",
        weight_decay = 0.02,
        lr_scheduler_type = "linear",
        seed = 3407,
        report_to = "wandb", # Use this for WandB etc
    ),
)

"""We also use Unsloth's `train_on_completions` method to only train on the assistant outputs and ignore the loss on the user's inputs. This helps increase accuracy of finetunes!"""

from unsloth.chat_templates import train_on_responses_only
trainer = train_on_responses_only(
    trainer,
    instruction_part = "<start_of_turn>user\n",
    response_part = "<start_of_turn>model\n",
)

"""Let's verify masking the instruction part is done! Let's print the 100th row again:"""

tokenizer.decode(trainer.train_dataset[100]["input_ids"])

"""Now let's print the masked out example - you should see only the answer is present:"""

tokenizer.decode([tokenizer.pad_token_id if x == -100 else x for x in trainer.train_dataset[100]["labels"]]).replace(tokenizer.pad_token, " ")

# @title Show current memory stats
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")

"""Let's train the model! To resume a training run, set `trainer.train(resume_from_checkpoint = True)`"""

trainer_stats = trainer.train()

# @title Show final memory and time stats
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
used_percentage = round(used_memory / max_memory * 100, 3)
lora_percentage = round(used_memory_for_lora / max_memory * 100, 3)
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
print(
    f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training."
)
print(f"Peak reserved memory = {used_memory} GB.")
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")