--- dataset_info: - config_name: default features: - name: utterance dtype: string - name: label sequence: int64 splits: - name: train num_bytes: 7169122 num_examples: 9042 - name: test num_bytes: 450937 num_examples: 358 download_size: 8973442 dataset_size: 7620059 - config_name: intents features: - name: id dtype: int64 - name: name dtype: string - name: tags sequence: 'null' - name: regex_full_match sequence: 'null' - name: regex_partial_match sequence: 'null' - name: description dtype: 'null' splits: - name: intents num_bytes: 291 num_examples: 10 download_size: 3034 dataset_size: 291 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - config_name: intents data_files: - split: intents path: intents/intents-* task_categories: - text-classification language: - en --- # reuters This is a text classification dataset. It is intended for machine learning research and experimentation. This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). ## Usage It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from autointent import Dataset reuters = Dataset.from_hub("AutoIntent/reuters") ``` ## Source This dataset is taken from `ucirvine/reuters21578` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): ```python from autointent import Dataset import datasets def get_intents_info(ds: datasets.DatasetDict) -> list[str]: return sorted(set(name for intents in ds["train"]["topics"] for name in intents)) def parse(ds: datasets.Dataset, intent_names: list[str]) -> list[dict]: return [{ "utterance": example["text"], "label": [int(name in example["topics"]) for name in intent_names] } for example in ds] def get_low_resource_classes_mask(ds: list[dict], intent_names: list[str], fraction_thresh: float = 0.01) -> list[bool]: res = [0] * len(intent_names) for sample in ds: for i, indicator in enumerate(sample["label"]): res[i] += indicator for i in range(len(intent_names)): res[i] /= len(ds) return [(frac < fraction_thresh) for frac in res] def remove_low_resource_classes(ds: datasets.Dataset, mask: list[bool]) -> list[dict]: res = [] for sample in ds: if sum(sample["label"]) == 1 and mask[sample["label"].index(1)]: continue sample["label"] = [ indicator for indicator, low_resource in zip(sample["label"], mask, strict=True) if not low_resource ] res.append(sample) return res def remove_oos(ds: list[dict]): return [sample for sample in ds if sum(sample["label"]) != 0] if __name__ == "__main__": reuters = datasets.load_dataset("ucirvine/reuters21578", "ModHayes", trust_remote_code=True) intent_names = get_intents_info(reuters) train_parsed = parse(reuters["train"], intent_names) test_parsed = parse(reuters["test"], intent_names) mask = get_low_resource_classes_mask(train_parsed, intent_names) intent_names = [name for i, name in enumerate(intent_names) if not mask[i]] train_filtered = remove_oos(remove_low_resource_classes(train_parsed, mask)) test_filtered = remove_oos(remove_low_resource_classes(test_parsed, mask)) intents = [{"id": i, "name": name} for i, name in enumerate(intent_names)] reuters_converted = Dataset.from_dict({"intents": intents, "train": train_filtered, "test": test_filtered}) ```