--- license: mit configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: image dtype: image - name: slide_name dtype: string - name: x dtype: int64 - name: y dtype: int64 - name: level dtype: int64 - name: patch_size sequence: int64 - name: resize sequence: int64 - name: embedding_vector sequence: sequence: float32 splits: - name: train num_bytes: 7855046412.21 num_examples: 85283 download_size: 7915527673 dataset_size: 7855046412.21 --- # Dataset Card for Histopathology Dataset ## Dataset Summary This dataset contains 224x224, 512x512 and 1024x1024 patches of a group of histopathology images taken from the [CAMELYON16](http://gigadb.org/dataset/100439) dataset and embedding vectors extracted from these patches using the [Google Path Foundation](https://huggingface.co/google/path-foundation) model. ![Data Processing](data_processing.png) ## Thumbnail of Main Slide ![Main Slide Thumbnail](test_001.png) ## Usage ```python from datasets import load_dataset dataset = load_dataset("Cilem/histopathology") display(dataset['train'][0]["image"]) ``` ## Supported Tasks Machine learning applications that can be performed using this dataset: * Classification * Segmentation * Image generation ## Languages * English ## Dataset Structure ### Data Fields - `image`: Image of the patch. - `slide_name`: Main slide name of the patch. - `x`: X coordinate of the patch. - `y`: Y coordinate of the patch. - `level`: Level of the main slide. - `patch_size`: Size of the patch. - `resize`: Image size used to obtain embedding vector with Path foundation model. - `embedding_vector`: Embedding vector of the patch extracted using Path foundation model. ## Dataset Creation ### Source Data - **Original Sources** - [CAMELYON16](http://gigadb.org/dataset/100439): List of images taken from CAMELYON16 dataset: * `test_001.tif` * `test_002.tif` * `test_003.tif` * `test_004.tif` * `test_005.tif` * `test_006.tif` * `test_007.tif` * `test_008.tif` * `test_009.tif` - [Google Path Foundation](https://huggingface.co/google/path-foundation): Embedding vectors extracted from the patches using the Path Foundation model. ## Considerations for Using the Data ### Social Impact and Bias Attention should be paid to the Path Foundation model licenses provided by Google.