Update README.md
Browse files
README.md
CHANGED
@@ -67,6 +67,30 @@ amazon-2023-all-category-k-core/
|
|
67 |
3. Filter out the `meta` data and `reviews` of items that are not in the filtered `ratings`.
|
68 |
4. Save the datasets in `.parquet` format.
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
## Dataset Sources
|
71 |
|
72 |
The original dataset is available at [Amazon reviews dataset](https://amazon-reviews-2023.github.io/).
|
|
|
67 |
3. Filter out the `meta` data and `reviews` of items that are not in the filtered `ratings`.
|
68 |
4. Save the datasets in `.parquet` format.
|
69 |
|
70 |
+
### Core Code Snippets
|
71 |
+
|
72 |
+
```python
|
73 |
+
# Iteratively remove all users and items with fewer than k ratings
|
74 |
+
|
75 |
+
k = 20
|
76 |
+
|
77 |
+
while True:
|
78 |
+
user_counts = df['user_id'].value_counts()
|
79 |
+
item_counts = df['parent_asin'].value_counts()
|
80 |
+
|
81 |
+
filtered_df = df[
|
82 |
+
df['user_id'].isin(user_counts[user_counts >= k].index) &
|
83 |
+
df['parent_asin'].isin(item_counts[item_counts >= k].index)
|
84 |
+
]
|
85 |
+
|
86 |
+
if len(filtered_df) == len(df):
|
87 |
+
break
|
88 |
+
|
89 |
+
df = filtered_df
|
90 |
+
|
91 |
+
# `df` or `filtered_df` would be the resulted data.
|
92 |
+
```
|
93 |
+
|
94 |
## Dataset Sources
|
95 |
|
96 |
The original dataset is available at [Amazon reviews dataset](https://amazon-reviews-2023.github.io/).
|