File size: 1,725 Bytes
e16a9d9 f8fa637 e16a9d9 afd8b5a 6b26ba8 afd8b5a 0df42dd 67d4f19 e16a9d9 f8fa637 e16a9d9 f8fa637 e16a9d9 f8fa637 e16a9d9 f8fa637 e16a9d9 f8fa637 e16a9d9 8801ce8 f8fa637 2712a12 f8fa637 8801ce8 f8fa637 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
license: apache-2.0
language:
- en
---
# Ocularone: Hazard Vest Dataset
<p align="center">
🤗 <a href="https://huggingface.co/datasets/Bhavani-23/Ocularone-Hazard-Vest-Dataset">Hugging Face</a>   |   🚀 <a href="https://github.com/dream-lab/ocularone-dataset-v0.git">Github</a>   
</p>
Note: The dataset was used to train YOLO models (v8 and v11) to detect the hazard vest on a person. The models can be found [here](https://huggingface.co/Bhavani-23/Ocularone-Hazard-Vest-Dataset-Models).
<!-- Provide a quick summary of the dataset. -->
The dataset has two files: one which contains all the images that were collected by a drone of a person wearing a hazard vest and walking around our University campus; the other file contains the training data with images that were randomly picked from the total dataset.
<!-- ## Dataset Details
### Dataset Description -->
## Dataset Structure
The dataset consists of multiple subfolders which describe the categories/conditions under which the images were collected. Each category folder has multiple subfolders for the images.
## References
<!-- ```text
@misc{ocularone-dataset-v0,
title = {Ocularone: Hazard Vest Dataset},
publisher = {GitHub},
howpublished = {\url{https://github.com/dream-lab/ocularone-dataset}},
}
``` -->
``` text
@misc{raj2024adaptiveheuristicsschedulingdnn,
title={Adaptive Heuristics for Scheduling DNN Inferencing on Edge and Cloud for Personalized UAV Fleets},
author={Suman Raj and Radhika Mittal and Harshil Gupta and Yogesh Simmhan},
year={2024},
eprint={2412.20860},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2412.20860},
}
``` |