01Matrix commited on
Commit
bb46f98
·
verified ·
1 Parent(s): a223ee4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -29
README.md CHANGED
@@ -152,13 +152,16 @@ language:
152
  tags:
153
  - biology
154
  - protein
155
- - instruction dataset
156
  - instruction tuning
 
 
 
157
  pretty_name: Open Protein Instructions(OPI)
158
  size_categories:
159
  - 1M<n<10M
160
  task_categories:
161
  - text-generation
 
162
  ---
163
 
164
  ![image.png](./OPI_logo.png)
@@ -180,36 +183,16 @@ Reference:
180
  - **Point of Contact:**
181
 
182
  ### Dataset Overview
 
183
 
184
  Open Protein Instructions(OPI) is the initial part of Open Biology Instructions(OBI) project, together with the subsequent Open Molecule Instructions(OMI), Open DNA Instructions(ODI), Open RNA Instructions(ORI) and Open Single-cell Instructions (OSCI). OBI is a project which aims to fully leverage the potential ability of Large Language Models(LLMs), especially the scientific LLMs like Galactica, to facilitate research in AI for Life Science community. While OBI is still in an early stage, we hope to provide a starting point for the community to bridge LLMs and biological domain knowledge.
185
 
186
- We are excited to announce the release of the OPI dataset, a curated collection of instructions covering 9 tasks for adapting LLMs to protein biology. The dataset is designed to advance LLM-driven research in the field of protein biology. We welcome contributions and enhancements to this dataset from the community.
187
-
188
- **Accessing the OPI dataset:**
189
- The OPI dataset is organized into the three subfolders—AP, KM, and SU—by in the [OPI_DATA](./OPI_DATA/) directory within this repository, where you can find a subset for each specific task as well as the full dataset file: [OPI_full_1.61M_train.json](./OPI_DATA/OPI_full_1.61M_train.json). f you want to merge all or several training data files of the tasks into one single training data file, please do like this:
190
-
191
- ## Dataset Examples
192
-
193
- **An example of OPI training data:**
194
- ```
195
- instruction:
196
- What is the EC classification of the input protein sequence based on its biological function?
197
- input:
198
- MGLVSSKKPDKEKPIKEKDKGQWSPLKVSAQDKDAPPLPPLVVFNHLTPPPPDEHLDEDKHFVVALYDYTAMNDRDLQMLKGEKLQVLKGTGDWWLARS
199
- LVTGREGYVPSNFVARVESLEMERWFFRSQGRKEAERQLLAPINKAGSFLIRESETNKGAFSLSVKDVTTQGELIKHYKIRCLDEGGYYISPRITFPSL
200
- QALVQHYSKKGDGLCQRLTLPCVRPAPQNPWAQDEWEIPRQSLRLVRKLGSGQFGEVWMGYYKNNMKVAIKTLKEGTMSPEAFLGEANVMKALQHERLV
201
- RLYAVVTKEPIYIVTEYMARGCLLDFLKTDEGSRLSLPRLIDMSAQIAEGMAYIERMNSIHRDLRAANILVSEALCCKIADFGLARIIDSEYTAQEGAK
202
- FPIKWTAPEAIHFGVFTIKADVWSFGVLLMEVVTYGRVPYPGMSNPEVIRNLERGYRMPRPDTCPPELYRGVIAECWRSRPEERPTFEFLQSVLEDFYT
203
- ATERQYELQP
204
- output:
205
- 2.7.10.2
206
- ```
207
- - **An example of OPI testing data:**
208
- ```
209
- {"id": "seed_task_0", "name": "EC number of price dataset from CLEAN", "instruction": "Return the EC number of the protein sequence.", "instances": [{"input": "MAIPPYPDFRSAAFLRQHLRATMAFYDPVATDASGGQFHFFLDDGTVYNTHTRHLVSATRFVVTHAMLYRTTGEARYQVGMRHALEFLRTAFLDPATGGYAWLIDWQDGRATVQDTTRHCYGMAFVMLAYARAYEAGVPEARVWLAEAFDTAEQHFWQPAAGLYADEASPDWQLTSYRGQNANMHACEAMISAFRATGERRYIERAEQLAQGICQRQAALSDRTHAPAAEGWVWEHFHADWSVDWDYNRHDRSNIFRPWGYQVGHQTEWAKLLLQLDALLPADWHLPCAQRLFDTAVERGWDAEHGGLYYGMAPDGSICDDGKYHWVQAESMAAAAVLAVRTGDARYWQWYDRIWAYCWAHFVDHEHGAWFRILHRDNRNTTREKSNAGKVDYHNMGACYDVLLWALDAPGFSKESRSAALGRP", "output": "5.3.1.7"}], "is_classification": false}
210
- ```
211
 
212
  ## OPI Dataset Folder Structure
 
213
  ```
214
  ./OPI_DATA/
215
  └── SU
@@ -269,10 +252,31 @@ output:
269
  └── gene_name_to_cancer_train.json
270
  ```
271
 
272
- ## OPI Dataset Construction Pipeline
273
 
274
- The OPI dataset is curated on our own by extracting key information from [Swiss-Prot](https://www.uniprot.org/uniprotkb?facets=reviewed%3Atrue&query=%2A) database. The following figure shows the general construction process.
275
- ![image.png](./OPI_data.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276
 
277
  ## License
278
  The dataset is licensed under a Creative Commons Attribution Non Commercial 4.0 License. The use of this dataset should also abide by the original [License & Disclaimer](https://www.uniprot.org/help/license) and [Privacy Notice](https://www.uniprot.org/help/privacy) of UniProt.
 
152
  tags:
153
  - biology
154
  - protein
 
155
  - instruction tuning
156
+ - AI4Science
157
+ - Life Science
158
+ - LLM
159
  pretty_name: Open Protein Instructions(OPI)
160
  size_categories:
161
  - 1M<n<10M
162
  task_categories:
163
  - text-generation
164
+ - question-answering
165
  ---
166
 
167
  ![image.png](./OPI_logo.png)
 
183
  - **Point of Contact:**
184
 
185
  ### Dataset Overview
186
+ We are excited to announce the release of the OPI dataset, a curated collection of instructions covering 9 tasks for adapting LLMs to protein biology, containing 1.61M samples. The dataset is designed to advance LLM-driven research in the field of protein biology. We welcome contributions and enhancements to this dataset from the community.
187
 
188
  Open Protein Instructions(OPI) is the initial part of Open Biology Instructions(OBI) project, together with the subsequent Open Molecule Instructions(OMI), Open DNA Instructions(ODI), Open RNA Instructions(ORI) and Open Single-cell Instructions (OSCI). OBI is a project which aims to fully leverage the potential ability of Large Language Models(LLMs), especially the scientific LLMs like Galactica, to facilitate research in AI for Life Science community. While OBI is still in an early stage, we hope to provide a starting point for the community to bridge LLMs and biological domain knowledge.
189
 
190
+ ## OPI Dataset Construction Pipeline
191
+ The OPI dataset is curated on our own by extracting key information from [Swiss-Prot](https://www.uniprot.org/uniprotkb?facets=reviewed%3Atrue&query=%2A) database. The following figure shows the general construction process.
192
+ ![image.png](./OPI_data.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193
 
194
  ## OPI Dataset Folder Structure
195
+ The OPI dataset is organized into the three subfolders—AP, KM, and SU—by in the [OPI_DATA](./OPI_DATA) directory within this repository, where you can find a subset for each specific task as well as the full dataset file: [OPI_full_1.61M_train.json](./OPI_DATA/OPI_full_1.61M_train.json).
196
  ```
197
  ./OPI_DATA/
198
  └── SU
 
252
  └── gene_name_to_cancer_train.json
253
  ```
254
 
255
+ ## Dataset Examples
256
 
257
+ **An example of OPI training data:**
258
+ ```
259
+ instruction:
260
+ What is the EC classification of the input protein sequence based on its biological function?
261
+ input:
262
+ MGLVSSKKPDKEKPIKEKDKGQWSPLKVSAQDKDAPPLPPLVVFNHLTPPPPDEHLDEDKHFVVALYDYTAMNDRDLQMLKGEKLQVLKGTGDWWLARS
263
+ LVTGREGYVPSNFVARVESLEMERWFFRSQGRKEAERQLLAPINKAGSFLIRESETNKGAFSLSVKDVTTQGELIKHYKIRCLDEGGYYISPRITFPSL
264
+ QALVQHYSKKGDGLCQRLTLPCVRPAPQNPWAQDEWEIPRQSLRLVRKLGSGQFGEVWMGYYKNNMKVAIKTLKEGTMSPEAFLGEANVMKALQHERLV
265
+ RLYAVVTKEPIYIVTEYMARGCLLDFLKTDEGSRLSLPRLIDMSAQIAEGMAYIERMNSIHRDLRAANILVSEALCCKIADFGLARIIDSEYTAQEGAK
266
+ FPIKWTAPEAIHFGVFTIKADVWSFGVLLMEVVTYGRVPYPGMSNPEVIRNLERGYRMPRPDTCPPELYRGVIAECWRSRPEERPTFEFLQSVLEDFYT
267
+ ATERQYELQP
268
+ output:
269
+ 2.7.10.2
270
+ ```
271
+ - **An example of OPI testing data:**
272
+ ```
273
+ {"id": "seed_task_0", "name": "EC number of price dataset from CLEAN", "instruction": "Return the EC number of the protein sequence.", "instances": [{"input":
274
+ "MAIPPYPDFRSAAFLRQHLRATMAFYDPVATDASGGQFHFFLDDGTVYNTHTRHLVSATRFVVTHAMLYRTTGEARYQVGMRHALEFLRTAFLDPATGGY
275
+ AWLIDWQDGRATVQDTTRHCYGMAFVMLAYARAYEAGVPEARVWLAEAFDTAEQHFWQPAAGLYADEASPDWQLTSYRGQNANMHACEAMISAFRATGERR
276
+ YIERAEQLAQGICQRQAALSDRTHAPAAEGWVWEHFHADWSVDWDYNRHDRSNIFRPWGYQVGHQTEWAKLLLQLDALLPADWHLPCAQRLFDTAVERGWD
277
+ AEHGGLYYGMAPDGSICDDGKYHWVQAESMAAAAVLAVRTGDARYWQWYDRIWAYCWAHFVDHEHGAWFRILHRDNRNTTREKSNAGKVDYHNMGACYDVL
278
+ LWALDAPGFSKESRSAALGRP", "output": "5.3.1.7"}], "is_classification": false}
279
+ ```
280
 
281
  ## License
282
  The dataset is licensed under a Creative Commons Attribution Non Commercial 4.0 License. The use of this dataset should also abide by the original [License & Disclaimer](https://www.uniprot.org/help/license) and [Privacy Notice](https://www.uniprot.org/help/privacy) of UniProt.