Tunisian_Language_Dataset / preprocess.py
azayz
add scripts to reproduce
4ce09e7
raw
history blame
2.86 kB
import re
from collections import Counter
import pandas as pd
from datasketch import MinHash, MinHashLSH
from lingua import Language, LanguageDetectorBuilder
# Initialize variables for statistics
word_count = Counter()
longest_sentence = ""
shortest_sentence = None
total_sentences = 0
all_sentences = []
def tokenize(text):
"""
Clean and split text into words.
"""
# Remove punctuation and split by whitespace
words = re.findall(r'\b\w+\b', text.lower())
return words
# Open the file and process line by line
with open('tunisian_data.txt', 'r') as file:
for line in file:
# Strip leading/trailing whitespace
line = line.strip()
# Skip empty lines
if not line:
continue
# Split the line into sentences (using '.', '!', or '?' as delimiters)
sentences = re.split(r'[.!?]', line)
for sentence in sentences:
sentence = sentence.strip()
if sentence:
all_sentences.append(sentence)
total_sentences += 1
# Update longest and shortest sentences
if len(sentence) > len(longest_sentence):
longest_sentence = sentence
if shortest_sentence is None or len(sentence) < len(shortest_sentence):
shortest_sentence = sentence
# Tokenize and count words
words = tokenize(sentence)
word_count.update(words)
# Get the most common words
most_common_words = word_count.most_common(10)
print(f"Most Common Words: {most_common_words}")
def get_minhash(text, num_perm=128):
"""
Generate a MinHash for a given text.
"""
tokens = set(text.split())
m = MinHash(num_perm=num_perm)
for token in tokens:
m.update(token.encode('utf8'))
return m
def minhash_deduplication(docs, threshold=0.8, num_perm=128):
"""
Remove near-duplicate documents using MinHash LSH.
"""
lsh = MinHashLSH(threshold=threshold, num_perm=num_perm)
unique_docs = []
for i, doc in enumerate(docs):
m = get_minhash(doc, num_perm=num_perm)
if not lsh.query(m): # Check if the document is a near duplicate
lsh.insert(i, m)
unique_docs.append(doc)
return unique_docs
unique_docs = minhash_deduplication(all_sentences, threshold=0.8)
print(f"Number of unique documents: {len(unique_docs)}")
# Language detection
detector = LanguageDetectorBuilder.from_languages(*Language.all()).build()
labels = []
cleaned_text = []
for s in unique_docs:
l = detector.detect_language_of(s)
if not l:
print(f"Could not detect language for sentence: {s}")
else:
labels.append(l.name)
cleaned_text.append(s)
# Create a DataFrame with the cleaned text
df = pd.DataFrame({'text': cleaned_text})