algunas correcciones en el preprocesamiento, hay que usar el _fixed
Browse files- examples_cross_entropy.py +120 -0
- src/data/{processed_features_240x320/features.npy → processed_features_224x224_fixed/x_test.npy} +2 -2
- src/data/processed_features_224x224_fixed/x_train.npy +3 -0
- src/data/{processed_features_240x320/labels.npy → processed_features_224x224_fixed/y_test.npy} +2 -2
- src/data/processed_features_224x224_fixed/y_train.npy +3 -0
- src/training/parakeets_cnn_training.ipynb +0 -0
- src/training/parakeets_cnn_training_fixed.ipynb +757 -0
- src/training/src/parakeets_cnn_training (1).ipynb +0 -0
examples_cross_entropy.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from keras.models import Sequential
|
3 |
+
from keras.layers import Dense
|
4 |
+
from keras.utils import to_categorical
|
5 |
+
|
6 |
+
print("🔥 EJEMPLOS: Binary vs Categorical Cross-Entropy")
|
7 |
+
print("=" * 60)
|
8 |
+
|
9 |
+
# ================================
|
10 |
+
# EJEMPLO 1: BINARY CROSS-ENTROPY
|
11 |
+
# ================================
|
12 |
+
print("\n1️⃣ BINARY CROSS-ENTROPY (Configuración correcta)")
|
13 |
+
print("-" * 50)
|
14 |
+
|
15 |
+
# Datos binarios simples
|
16 |
+
y_binary = np.array([0, 1, 0, 1, 0]) # Etiquetas simples
|
17 |
+
print(f"Etiquetas binarias: {y_binary}")
|
18 |
+
|
19 |
+
# Modelo binario
|
20 |
+
model_binary = Sequential([
|
21 |
+
Dense(10, activation='relu', input_shape=(5,)),
|
22 |
+
Dense(1, activation='sigmoid') # ← 1 neurona con sigmoid
|
23 |
+
])
|
24 |
+
|
25 |
+
model_binary.compile(
|
26 |
+
optimizer='adam',
|
27 |
+
loss='binary_crossentropy', # ← Binary loss
|
28 |
+
metrics=['accuracy']
|
29 |
+
)
|
30 |
+
|
31 |
+
print("✅ Arquitectura binaria:")
|
32 |
+
print(f" • Salida: {model_binary.layers[-1].units} neurona")
|
33 |
+
print(f" • Activación: {model_binary.layers[-1].activation.__name__}")
|
34 |
+
print(f" • Etiquetas: valores simples [0, 1]")
|
35 |
+
|
36 |
+
# ================================
|
37 |
+
# EJEMPLO 2: CATEGORICAL CROSS-ENTROPY
|
38 |
+
# ================================
|
39 |
+
print("\n2️⃣ CATEGORICAL CROSS-ENTROPY (Configuración correcta)")
|
40 |
+
print("-" * 50)
|
41 |
+
|
42 |
+
# Convertir a one-hot
|
43 |
+
y_categorical = to_categorical(y_binary, num_classes=2)
|
44 |
+
print(f"Etiquetas categóricas (one-hot):")
|
45 |
+
for i, label in enumerate(y_categorical):
|
46 |
+
print(f" {y_binary[i]} → {label}")
|
47 |
+
|
48 |
+
# Modelo categórico
|
49 |
+
model_categorical = Sequential([
|
50 |
+
Dense(10, activation='relu', input_shape=(5,)),
|
51 |
+
Dense(2, activation='softmax') # ← 2 neuronas con softmax
|
52 |
+
])
|
53 |
+
|
54 |
+
model_categorical.compile(
|
55 |
+
optimizer='adam',
|
56 |
+
loss='categorical_crossentropy', # ← Categorical loss
|
57 |
+
metrics=['accuracy']
|
58 |
+
)
|
59 |
+
|
60 |
+
print("✅ Arquitectura categórica:")
|
61 |
+
print(f" • Salida: {model_categorical.layers[-1].units} neuronas")
|
62 |
+
print(f" • Activación: {model_categorical.layers[-1].activation.__name__}")
|
63 |
+
print(f" • Etiquetas: one-hot vectors [[1,0], [0,1]]")
|
64 |
+
|
65 |
+
# ================================
|
66 |
+
# EJEMPLO 3: ❌ CONFIGURACIÓN INCORRECTA (tu problema original)
|
67 |
+
# ================================
|
68 |
+
print("\n❌ CONFIGURACIÓN INCORRECTA (tu problema original)")
|
69 |
+
print("-" * 50)
|
70 |
+
|
71 |
+
print("🚨 PROBLEMA: binary_crossentropy + to_categorical() + 2 neuronas")
|
72 |
+
print(" • Loss: binary_crossentropy")
|
73 |
+
print(" • Etiquetas: [[1,0], [0,1]] (one-hot)")
|
74 |
+
print(" • Salida: 2 neuronas con softmax")
|
75 |
+
print(" • RESULTADO: ❌ No puede aprender correctamente")
|
76 |
+
|
77 |
+
# ================================
|
78 |
+
# COMPARACIÓN DE SALIDAS
|
79 |
+
# ================================
|
80 |
+
print("\n📊 COMPARACIÓN DE SALIDAS")
|
81 |
+
print("-" * 50)
|
82 |
+
|
83 |
+
# Datos dummy para ejemplo
|
84 |
+
X_dummy = np.random.random((5, 5))
|
85 |
+
|
86 |
+
# Predicciones binarias
|
87 |
+
pred_binary = model_binary.predict(X_dummy, verbose=0)
|
88 |
+
print("Predicciones binarias:")
|
89 |
+
for i, pred in enumerate(pred_binary):
|
90 |
+
print(f" Muestra {i}: {pred[0]:.4f} (probabilidad clase 1)")
|
91 |
+
|
92 |
+
# Predicciones categóricas
|
93 |
+
pred_categorical = model_categorical.predict(X_dummy, verbose=0)
|
94 |
+
print("\nPredicciones categóricas:")
|
95 |
+
for i, pred in enumerate(pred_categorical):
|
96 |
+
print(f" Muestra {i}: [{pred[0]:.4f}, {pred[1]:.4f}] (prob clase 0, prob clase 1)")
|
97 |
+
|
98 |
+
# ================================
|
99 |
+
# RECOMENDACIONES PARA TU PROYECTO
|
100 |
+
# ================================
|
101 |
+
print("\n🎯 RECOMENDACIONES PARA TU PROYECTO DE COTORRAS")
|
102 |
+
print("-" * 50)
|
103 |
+
|
104 |
+
print("Tienes 2 opciones correctas:")
|
105 |
+
print()
|
106 |
+
print("OPCIÓN A - Categorical (RECOMENDADA):")
|
107 |
+
print("✅ model.add(Dense(2, activation='softmax'))")
|
108 |
+
print("✅ model.compile(loss='categorical_crossentropy')")
|
109 |
+
print("✅ y_labels = to_categorical([0,1,0,1])")
|
110 |
+
print(" • Más fácil de extender a más clases")
|
111 |
+
print(" • Mejor para análisis de confianza")
|
112 |
+
print()
|
113 |
+
print("OPCIÓN B - Binary:")
|
114 |
+
print("✅ model.add(Dense(1, activation='sigmoid'))")
|
115 |
+
print("✅ model.compile(loss='binary_crossentropy')")
|
116 |
+
print("✅ y_labels = [0,1,0,1] # SIN to_categorical()")
|
117 |
+
print(" • Más simple para solo 2 clases")
|
118 |
+
print(" • Menos parámetros")
|
119 |
+
|
120 |
+
print("\n🚀 Para tu caso: Usa OPCIÓN A (categorical) porque ya tienes to_categorical()")
|
src/data/{processed_features_240x320/features.npy → processed_features_224x224_fixed/x_test.npy}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08eef84e6c87b234ee3c7a3df47d0de0f9d24dddd2d6b92de9c2620243c31d16
|
3 |
+
size 461217920
|
src/data/processed_features_224x224_fixed/x_train.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95dac06126ed9f970fa30d2da49743a73dcd2dcacc1da86f39559f960f59ee69
|
3 |
+
size 1074770048
|
src/data/{processed_features_240x320/labels.npy → processed_features_224x224_fixed/y_test.npy}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d817be612c7b496ceb841e693d282f33b1f39b3ca9b2e14677b83cf986d6b23e
|
3 |
+
size 6256
|
src/data/processed_features_224x224_fixed/y_train.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:968ce25d915ec3be11c0137d0a389c2b9d66a4da377e3a14cefa55e832ab69a5
|
3 |
+
size 14408
|
src/training/parakeets_cnn_training.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
src/training/parakeets_cnn_training_fixed.ipynb
ADDED
@@ -0,0 +1,757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "raw",
|
5 |
+
"metadata": {
|
6 |
+
"vscode": {
|
7 |
+
"languageId": "raw"
|
8 |
+
}
|
9 |
+
},
|
10 |
+
"source": [
|
11 |
+
"# Parakeet CNN Training - VERSIÓN BINARIA OPTIMIZADA\n",
|
12 |
+
"\n",
|
13 |
+
"## 🎯 **Configuración BINARIA (más eficiente para tu caso)**\n",
|
14 |
+
"\n",
|
15 |
+
"### Principales correcciones:\n",
|
16 |
+
"1. **🔥 Binary Cross-Entropy**: Más eficiente para clasificación binaria (cotorra vs no-cotorra)\n",
|
17 |
+
"2. **🚀 1 neurona de salida**: En lugar de 2 (menos parámetros, más rápido)\n",
|
18 |
+
"3. **📊 Sin to_categorical()**: Etiquetas directas [0,1] en lugar de [[1,0],[0,1]]\n",
|
19 |
+
"4. **⚡ Normalización Min-Max**: Mejor para spectrogramas [0,1]\n",
|
20 |
+
"5. **🏗️ Arquitectura optimizada**: BatchNormalization, Dropout\n",
|
21 |
+
"\n",
|
22 |
+
"### ✅ **Por qué Binary es mejor para tu caso:**\n",
|
23 |
+
"- Solo 2 clases: cotorra vs no-cotorra\n",
|
24 |
+
"- Más eficiente: menos parámetros y memoria\n",
|
25 |
+
"- Salida intuitiva: probabilidad directa de ser cotorra\n"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 1,
|
31 |
+
"metadata": {},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"import numpy as np\n",
|
35 |
+
"import librosa\n",
|
36 |
+
"import os\n",
|
37 |
+
"from sklearn.model_selection import train_test_split\n",
|
38 |
+
"# from keras.utils import to_categorical # ← NO NECESARIO para binary classification\n",
|
39 |
+
"import matplotlib.pyplot as plt\n",
|
40 |
+
"from scipy.ndimage import zoom\n",
|
41 |
+
"import warnings\n",
|
42 |
+
"warnings.filterwarnings('ignore')\n",
|
43 |
+
"\n",
|
44 |
+
"print(\"🎯 Configuración BINARIA cargada:\")\n",
|
45 |
+
"print(\" • SIN to_categorical() - etiquetas directas [0,1]\")\n",
|
46 |
+
"print(\" • Para: binary_crossentropy + 1 neurona sigmoid\")\n"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"execution_count": 29,
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"def extract_spectrogram_features(audio_file, target_size=(224, 224)):\n",
|
56 |
+
" \"\"\"\n",
|
57 |
+
" Extrae características del espectrograma con parámetros optimizados\n",
|
58 |
+
" \"\"\"\n",
|
59 |
+
" # Parámetros optimizados del espectrograma\n",
|
60 |
+
" sr = 32000 # Frecuencia estándar para audio\n",
|
61 |
+
" n_fft = 340 # Ventana más grande para mejor resolución\n",
|
62 |
+
" hop_length = 85 # Hop length proporcional\n",
|
63 |
+
" \n",
|
64 |
+
" # Cargar audio\n",
|
65 |
+
" y, sr = librosa.load(audio_file, sr=sr)\n",
|
66 |
+
" \n",
|
67 |
+
" # Generar mel-espectrograma con parámetros compatibles\n",
|
68 |
+
" mel_spec = librosa.feature.melspectrogram(\n",
|
69 |
+
" y=y, \n",
|
70 |
+
" sr=sr, \n",
|
71 |
+
" n_fft=n_fft, \n",
|
72 |
+
" hop_length=hop_length,\n",
|
73 |
+
" )\n",
|
74 |
+
" \n",
|
75 |
+
" # Convertir a dB\n",
|
76 |
+
" log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)\n",
|
77 |
+
" \n",
|
78 |
+
" # Redimensionar al tamaño objetivo\n",
|
79 |
+
" zoom_factors = (target_size[0] / log_mel_spec.shape[0], \n",
|
80 |
+
" target_size[1] / log_mel_spec.shape[1])\n",
|
81 |
+
" resized_spec = zoom(log_mel_spec, zoom_factors, order=1)\n",
|
82 |
+
" \n",
|
83 |
+
" spec_3channel = np.stack([resized_spec] * 3, axis=-1)\n",
|
84 |
+
" \n",
|
85 |
+
" return spec_3channel\n"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": 30,
|
91 |
+
"metadata": {},
|
92 |
+
"outputs": [],
|
93 |
+
"source": [
|
94 |
+
"def load_audio_features_from_path(path, label, target_size=(224, 224)):\n",
|
95 |
+
" \"\"\"\n",
|
96 |
+
" Carga características de audio con validación mejorada\n",
|
97 |
+
" \"\"\"\n",
|
98 |
+
" features = []\n",
|
99 |
+
" labels = []\n",
|
100 |
+
" \n",
|
101 |
+
" print(f\"Procesando: {path}\")\n",
|
102 |
+
" files = [f for f in os.listdir(path) if f.endswith(('.wav', '.WAV'))]\n",
|
103 |
+
" print(f\"Archivos encontrados: {len(files)}\")\n",
|
104 |
+
" \n",
|
105 |
+
" for i, file in enumerate(files):\n",
|
106 |
+
" if i % 100 == 0:\n",
|
107 |
+
" print(f\"Procesando archivo {i+1}/{len(files)}\")\n",
|
108 |
+
" \n",
|
109 |
+
" audio_file = os.path.join(path, file)\n",
|
110 |
+
" try:\n",
|
111 |
+
" feature = extract_spectrogram_features(audio_file, target_size)\n",
|
112 |
+
" features.append(feature)\n",
|
113 |
+
" labels.append(label)\n",
|
114 |
+
" except Exception as e:\n",
|
115 |
+
" print(f\"Error procesando {file}: {e}\")\n",
|
116 |
+
" \n",
|
117 |
+
" print(f\"Características extraídas: {len(features)}\")\n",
|
118 |
+
" return features, labels\n"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": 31,
|
124 |
+
"metadata": {},
|
125 |
+
"outputs": [],
|
126 |
+
"source": [
|
127 |
+
"def normalize_features_globally(features, method='minmax'):\n",
|
128 |
+
" \"\"\"\n",
|
129 |
+
" Normalización global consistente de todas las características\n",
|
130 |
+
" CRÍTICO: Normaliza todo el dataset con las mismas estadísticas\n",
|
131 |
+
" \n",
|
132 |
+
" Args:\n",
|
133 |
+
" features: Lista de características extraídas\n",
|
134 |
+
" method: 'minmax' (recomendado para spectrogramas) o 'zscore'\n",
|
135 |
+
" \"\"\"\n",
|
136 |
+
" features_array = np.array(features)\n",
|
137 |
+
" \n",
|
138 |
+
" if method == 'minmax':\n",
|
139 |
+
" # Min-Max Scaling: [0, 1] - RECOMENDADO para spectrogramas\n",
|
140 |
+
" global_min = np.min(features_array)\n",
|
141 |
+
" global_max = np.max(features_array)\n",
|
142 |
+
" \n",
|
143 |
+
" # Evitar división por cero\n",
|
144 |
+
" if global_max == global_min:\n",
|
145 |
+
" print(\"⚠️ Todos los valores son iguales. Usando valores por defecto.\")\n",
|
146 |
+
" return features_array\n",
|
147 |
+
" \n",
|
148 |
+
" normalized_features = (features_array - global_min) / (global_max - global_min)\n",
|
149 |
+
" print(f\"✅ Min-Max Normalización aplicada:\")\n",
|
150 |
+
" print(f\" Min global: {global_min:.4f} → 0\")\n",
|
151 |
+
" print(f\" Max global: {global_max:.4f} → 1\")\n",
|
152 |
+
" print(f\" Rango: [0, 1] - Perfecto para CNNs\")\n",
|
153 |
+
" \n",
|
154 |
+
" elif method == 'zscore':\n",
|
155 |
+
" # Z-Score Scaling: media=0, std=1\n",
|
156 |
+
" global_mean = np.mean(features_array)\n",
|
157 |
+
" global_std = np.std(features_array)\n",
|
158 |
+
" \n",
|
159 |
+
" normalized_features = (features_array - global_mean) / (global_std + 1e-8)\n",
|
160 |
+
" print(f\"✅ Z-Score Normalización aplicada:\")\n",
|
161 |
+
" print(f\" Media global: {global_mean:.4f} → 0\")\n",
|
162 |
+
" print(f\" Std global: {global_std:.4f} → 1\")\n",
|
163 |
+
" \n",
|
164 |
+
" else:\n",
|
165 |
+
" raise ValueError(\"method debe ser 'minmax' o 'zscore'\")\n",
|
166 |
+
" \n",
|
167 |
+
" # Verificar rango final\n",
|
168 |
+
" final_min, final_max = np.min(normalized_features), np.max(normalized_features)\n",
|
169 |
+
" print(f\" Verificación - Rango final: [{final_min:.4f}, {final_max:.4f}]\")\n",
|
170 |
+
" \n",
|
171 |
+
" return normalized_features\n"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "code",
|
176 |
+
"execution_count": 34,
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [
|
179 |
+
{
|
180 |
+
"name": "stdout",
|
181 |
+
"output_type": "stream",
|
182 |
+
"text": [
|
183 |
+
"=== EXTRAYENDO CARACTERÍSTICAS DE COTORRAS ===\n",
|
184 |
+
"Procesando: ../../data/crudo/clips/cotorra_1500\n",
|
185 |
+
"Archivos encontrados: 1500\n",
|
186 |
+
"Procesando archivo 1/1500\n",
|
187 |
+
"Procesando archivo 101/1500\n",
|
188 |
+
"Procesando archivo 201/1500\n",
|
189 |
+
"Procesando archivo 301/1500\n",
|
190 |
+
"Procesando archivo 401/1500\n",
|
191 |
+
"Procesando archivo 501/1500\n",
|
192 |
+
"Procesando archivo 601/1500\n",
|
193 |
+
"Procesando archivo 701/1500\n",
|
194 |
+
"Procesando archivo 801/1500\n",
|
195 |
+
"Procesando archivo 901/1500\n",
|
196 |
+
"Procesando archivo 1001/1500\n",
|
197 |
+
"Procesando archivo 1101/1500\n",
|
198 |
+
"Procesando archivo 1201/1500\n",
|
199 |
+
"Procesando archivo 1301/1500\n",
|
200 |
+
"Procesando archivo 1401/1500\n",
|
201 |
+
"Características extraídas: 1500\n",
|
202 |
+
"\n",
|
203 |
+
"=== EXTRAYENDO CARACTERÍSTICAS DE NO-COTORRAS ===\n",
|
204 |
+
"Procesando: ../../data/crudo/clips/no_cotorra\n",
|
205 |
+
"Archivos encontrados: 464\n",
|
206 |
+
"Procesando archivo 1/464\n",
|
207 |
+
"Procesando archivo 101/464\n",
|
208 |
+
"Procesando archivo 201/464\n",
|
209 |
+
"Procesando archivo 301/464\n",
|
210 |
+
"Procesando archivo 401/464\n",
|
211 |
+
"Características extraídas: 464\n",
|
212 |
+
"Procesando: ../../data/crudo/clips/no_cotorra/aves\n",
|
213 |
+
"Archivos encontrados: 587\n",
|
214 |
+
"Procesando archivo 1/587\n",
|
215 |
+
"Procesando archivo 101/587\n",
|
216 |
+
"Procesando archivo 201/587\n",
|
217 |
+
"Procesando archivo 301/587\n",
|
218 |
+
"Procesando archivo 401/587\n",
|
219 |
+
"Procesando archivo 501/587\n",
|
220 |
+
"Características extraídas: 587\n",
|
221 |
+
"\n",
|
222 |
+
"=== RESUMEN DE DATOS ===\n",
|
223 |
+
"Total de muestras: 2551\n",
|
224 |
+
"Cotorras: 1500 (58.8%)\n",
|
225 |
+
"No-cotorras: 1051 (41.2%)\n"
|
226 |
+
]
|
227 |
+
}
|
228 |
+
],
|
229 |
+
"source": [
|
230 |
+
"# CORRECCIÓN: Flujo de procesamiento mejorado\n",
|
231 |
+
"# Rutas de datos\n",
|
232 |
+
"cotorra_path = \"../../data/crudo/clips/cotorra_1500\"\n",
|
233 |
+
"no_cotorra_path_1 = \"../../data/crudo/clips/no_cotorra\"\n",
|
234 |
+
"no_cotorra_path_2 = \"../../data/crudo/clips/no_cotorra/aves\"\n",
|
235 |
+
"output_path = \"../data/processed_features_224x224_fixed\"\n",
|
236 |
+
"\n",
|
237 |
+
"# Crear directorio de salida\n",
|
238 |
+
"os.makedirs(output_path, exist_ok=True)\n",
|
239 |
+
"\n",
|
240 |
+
"# Extraer características SIN normalización individual\n",
|
241 |
+
"print(\"=== EXTRAYENDO CARACTERÍSTICAS DE COTORRAS ===\")\n",
|
242 |
+
"cotorra_features, cotorra_labels = load_audio_features_from_path(cotorra_path, 1)\n",
|
243 |
+
"\n",
|
244 |
+
"print(\"\\n=== EXTRAYENDO CARACTERÍSTICAS DE NO-COTORRAS ===\")\n",
|
245 |
+
"no_cotorra_features, no_cotorra_labels = load_audio_features_from_path(no_cotorra_path_1, 0)\n",
|
246 |
+
"no_cotorra_features_2, no_cotorra_labels_2 = load_audio_features_from_path(no_cotorra_path_2, 0)\n",
|
247 |
+
"\n",
|
248 |
+
"# Combinar datos\n",
|
249 |
+
"all_features = cotorra_features + no_cotorra_features + no_cotorra_features_2\n",
|
250 |
+
"all_labels = cotorra_labels + no_cotorra_labels + no_cotorra_labels_2\n",
|
251 |
+
"\n",
|
252 |
+
"print(f\"\\n=== RESUMEN DE DATOS ===\")\n",
|
253 |
+
"print(f\"Total de muestras: {len(all_features)}\")\n",
|
254 |
+
"print(f\"Cotorras: {sum(all_labels)} ({sum(all_labels)/len(all_labels)*100:.1f}%)\")\n",
|
255 |
+
"print(f\"No-cotorras: {len(all_labels) - sum(all_labels)} ({(len(all_labels) - sum(all_labels))/len(all_labels)*100:.1f}%)\")\n"
|
256 |
+
]
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"cell_type": "code",
|
260 |
+
"execution_count": 35,
|
261 |
+
"metadata": {},
|
262 |
+
"outputs": [
|
263 |
+
{
|
264 |
+
"name": "stdout",
|
265 |
+
"output_type": "stream",
|
266 |
+
"text": [
|
267 |
+
"\n",
|
268 |
+
"=== APLICANDO NORMALIZACIÓN GLOBAL ===\n",
|
269 |
+
"✅ Min-Max Normalización aplicada:\n",
|
270 |
+
" Min global: -80.0000 → 0\n",
|
271 |
+
" Max global: 0.0000 → 1\n",
|
272 |
+
" Rango: [0, 1] - Perfecto para CNNs\n",
|
273 |
+
" Verificación - Rango final: [0.0000, 1.0000]\n",
|
274 |
+
"\n",
|
275 |
+
"Forma de entrenamiento: (1785, 224, 224, 3)\n",
|
276 |
+
"Forma de test: (766, 224, 224, 3)\n",
|
277 |
+
"Distribución train - Cotorras: 1050 / No-cotorras: 735\n",
|
278 |
+
"Distribución test - Cotorras: 450 / No-cotorras: 316\n",
|
279 |
+
"\n",
|
280 |
+
"Ejemplo y_train_encoded: [[0. 1.]\n",
|
281 |
+
" [1. 0.]\n",
|
282 |
+
" [1. 0.]\n",
|
283 |
+
" [0. 1.]\n",
|
284 |
+
" [1. 0.]]\n",
|
285 |
+
"Forma y_train_encoded: (1785, 2)\n",
|
286 |
+
"Datos guardados exitosamente!\n"
|
287 |
+
]
|
288 |
+
}
|
289 |
+
],
|
290 |
+
"source": [
|
291 |
+
"# 🔥 CORRECCIÓN BINARIA: Normalización global ANTES de split\n",
|
292 |
+
"print(\"\\n=== APLICANDO NORMALIZACIÓN GLOBAL ===\")\n",
|
293 |
+
"\n",
|
294 |
+
"# Min-Max [0, 1] - PERFECTO para spectrogramas\n",
|
295 |
+
"all_features_normalized = normalize_features_globally(all_features, method='minmax')\n",
|
296 |
+
"all_labels_array = np.array(all_labels)\n",
|
297 |
+
"\n",
|
298 |
+
"# División estratificada\n",
|
299 |
+
"x_train, x_test, y_train, y_test = train_test_split(\n",
|
300 |
+
" all_features_normalized, all_labels_array, \n",
|
301 |
+
" test_size=0.3, \n",
|
302 |
+
" random_state=42, \n",
|
303 |
+
" stratify=all_labels_array\n",
|
304 |
+
")\n",
|
305 |
+
"\n",
|
306 |
+
"# 🎯 CONFIGURACIÓN BINARIA: SIN to_categorical()\n",
|
307 |
+
"# Para binary_crossentropy usamos etiquetas directas [0, 1]\n",
|
308 |
+
"# NO CONVERTIMOS a one-hot [[1,0], [0,1]]\n",
|
309 |
+
"\n",
|
310 |
+
"print(f\"\\n✅ CONFIGURACIÓN BINARIA:\")\n",
|
311 |
+
"print(f\" • Etiquetas: valores directos [0, 1] (SIN one-hot)\")\n",
|
312 |
+
"print(f\" • y_train shape: {y_train.shape} - valores simples\")\n",
|
313 |
+
"print(f\" • y_test shape: {y_test.shape} - valores simples\")\n",
|
314 |
+
"\n",
|
315 |
+
"print(f\"\\n📊 DISTRIBUCIÓN:\")\n",
|
316 |
+
"print(f\" • Train - Cotorras: {np.sum(y_train)} / No-cotorras: {len(y_train) - np.sum(y_train)}\")\n",
|
317 |
+
"print(f\" • Test - Cotorras: {np.sum(y_test)} / No-cotorras: {len(y_test) - np.sum(y_test)}\")\n",
|
318 |
+
"\n",
|
319 |
+
"# Verificar etiquetas binarias\n",
|
320 |
+
"print(f\"\\n🔍 EJEMPLO ETIQUETAS:\")\n",
|
321 |
+
"print(f\" • y_train[:10]: {y_train[:10]} (0=no-cotorra, 1=cotorra)\")\n",
|
322 |
+
"print(f\" • Rango: [{y_train.min()}, {y_train.max()}] ✅\")\n",
|
323 |
+
"\n",
|
324 |
+
"# Guardar datos procesados (SIN _encoded porque son binarios directos)\n",
|
325 |
+
"np.save(os.path.join(output_path, 'x_train.npy'), x_train)\n",
|
326 |
+
"np.save(os.path.join(output_path, 'x_test.npy'), x_test)\n",
|
327 |
+
"np.save(os.path.join(output_path, 'y_train.npy'), y_train) # ← Sin encoded\n",
|
328 |
+
"np.save(os.path.join(output_path, 'y_test.npy'), y_test) # ← Sin encoded\n",
|
329 |
+
"\n",
|
330 |
+
"print(\"💾 Datos binarios guardados exitosamente!\")\n",
|
331 |
+
"print(\"🚀 Listos para binary_crossentropy + 1 neurona sigmoid\")\n"
|
332 |
+
]
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"cell_type": "code",
|
336 |
+
"execution_count": 36,
|
337 |
+
"metadata": {},
|
338 |
+
"outputs": [],
|
339 |
+
"source": [
|
340 |
+
"from keras.models import Sequential\n",
|
341 |
+
"from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization\n",
|
342 |
+
"from keras.optimizers import Adam # Automáticamente usa legacy en M1/M2 Macs\n",
|
343 |
+
"from keras.callbacks import EarlyStopping, ReduceLROnPlateau\n",
|
344 |
+
"import keras\n"
|
345 |
+
]
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"cell_type": "code",
|
349 |
+
"execution_count": 37,
|
350 |
+
"metadata": {},
|
351 |
+
"outputs": [
|
352 |
+
{
|
353 |
+
"name": "stdout",
|
354 |
+
"output_type": "stream",
|
355 |
+
"text": [
|
356 |
+
"Model: \"sequential_4\"\n",
|
357 |
+
"_________________________________________________________________\n",
|
358 |
+
" Layer (type) Output Shape Param # \n",
|
359 |
+
"=================================================================\n",
|
360 |
+
" conv2d_16 (Conv2D) (None, 222, 222, 32) 896 \n",
|
361 |
+
" \n",
|
362 |
+
" batch_normalization_16 (Ba (None, 222, 222, 32) 128 \n",
|
363 |
+
" tchNormalization) \n",
|
364 |
+
" \n",
|
365 |
+
" max_pooling2d_16 (MaxPooli (None, 111, 111, 32) 0 \n",
|
366 |
+
" ng2D) \n",
|
367 |
+
" \n",
|
368 |
+
" conv2d_17 (Conv2D) (None, 109, 109, 64) 18496 \n",
|
369 |
+
" \n",
|
370 |
+
" batch_normalization_17 (Ba (None, 109, 109, 64) 256 \n",
|
371 |
+
" tchNormalization) \n",
|
372 |
+
" \n",
|
373 |
+
" max_pooling2d_17 (MaxPooli (None, 54, 54, 64) 0 \n",
|
374 |
+
" ng2D) \n",
|
375 |
+
" \n",
|
376 |
+
" conv2d_18 (Conv2D) (None, 52, 52, 128) 73856 \n",
|
377 |
+
" \n",
|
378 |
+
" batch_normalization_18 (Ba (None, 52, 52, 128) 512 \n",
|
379 |
+
" tchNormalization) \n",
|
380 |
+
" \n",
|
381 |
+
" max_pooling2d_18 (MaxPooli (None, 26, 26, 128) 0 \n",
|
382 |
+
" ng2D) \n",
|
383 |
+
" \n",
|
384 |
+
" conv2d_19 (Conv2D) (None, 24, 24, 256) 295168 \n",
|
385 |
+
" \n",
|
386 |
+
" batch_normalization_19 (Ba (None, 24, 24, 256) 1024 \n",
|
387 |
+
" tchNormalization) \n",
|
388 |
+
" \n",
|
389 |
+
" max_pooling2d_19 (MaxPooli (None, 12, 12, 256) 0 \n",
|
390 |
+
" ng2D) \n",
|
391 |
+
" \n",
|
392 |
+
" flatten_4 (Flatten) (None, 36864) 0 \n",
|
393 |
+
" \n",
|
394 |
+
" dense_12 (Dense) (None, 512) 18874880 \n",
|
395 |
+
" \n",
|
396 |
+
" dropout_8 (Dropout) (None, 512) 0 \n",
|
397 |
+
" \n",
|
398 |
+
" dense_13 (Dense) (None, 128) 65664 \n",
|
399 |
+
" \n",
|
400 |
+
" dropout_9 (Dropout) (None, 128) 0 \n",
|
401 |
+
" \n",
|
402 |
+
" dense_14 (Dense) (None, 2) 258 \n",
|
403 |
+
" \n",
|
404 |
+
"=================================================================\n",
|
405 |
+
"Total params: 19331138 (73.74 MB)\n",
|
406 |
+
"Trainable params: 19330178 (73.74 MB)\n",
|
407 |
+
"Non-trainable params: 960 (3.75 KB)\n",
|
408 |
+
"_________________________________________________________________\n"
|
409 |
+
]
|
410 |
+
}
|
411 |
+
],
|
412 |
+
"source": [
|
413 |
+
"# CORRECCIÓN PRINCIPAL: Modelo con loss function compatible (estilo original)\n",
|
414 |
+
"model = Sequential()\n",
|
415 |
+
"model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)))\n",
|
416 |
+
"model.add(BatchNormalization())\n",
|
417 |
+
"model.add(MaxPooling2D(2, 2))\n",
|
418 |
+
"\n",
|
419 |
+
"model.add(Conv2D(64, (3, 3), activation='relu'))\n",
|
420 |
+
"model.add(BatchNormalization())\n",
|
421 |
+
"model.add(MaxPooling2D(2, 2))\n",
|
422 |
+
"\n",
|
423 |
+
"model.add(Conv2D(128, (3, 3), activation='relu'))\n",
|
424 |
+
"model.add(BatchNormalization())\n",
|
425 |
+
"model.add(MaxPooling2D(2, 2))\n",
|
426 |
+
"\n",
|
427 |
+
"model.add(Conv2D(256, (3, 3), activation='relu'))\n",
|
428 |
+
"model.add(BatchNormalization())\n",
|
429 |
+
"model.add(MaxPooling2D(2, 2))\n",
|
430 |
+
"\n",
|
431 |
+
"model.add(Flatten())\n",
|
432 |
+
"model.add(Dense(512, activation='relu'))\n",
|
433 |
+
"model.add(Dropout(0.5))\n",
|
434 |
+
"model.add(Dense(128, activation='relu'))\n",
|
435 |
+
"model.add(Dropout(0.3))\n",
|
436 |
+
"\n",
|
437 |
+
"# 🔥 SALIDA BINARIA: 1 neurona con sigmoid (más eficiente)\n",
|
438 |
+
"model.add(Dense(1, activation='sigmoid'))\n",
|
439 |
+
"\n",
|
440 |
+
"# 🎯 CONFIGURACIÓN BINARIA: binary_crossentropy + etiquetas directas [0,1]\n",
|
441 |
+
"model.compile(\n",
|
442 |
+
" optimizer='adam', # Keras automáticamente usa legacy Adam en M1/M2\n",
|
443 |
+
" loss='binary_crossentropy', # ← CORRECCIÓN BINARIA PRINCIPAL\n",
|
444 |
+
" metrics=['accuracy']\n",
|
445 |
+
")\n",
|
446 |
+
"\n",
|
447 |
+
"model.summary()\n"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"cell_type": "code",
|
452 |
+
"execution_count": null,
|
453 |
+
"metadata": {},
|
454 |
+
"outputs": [],
|
455 |
+
"source": [
|
456 |
+
"# 🚀 ENTRENAMIENTO BINARIO OPTIMIZADO\n",
|
457 |
+
"print(\"🎯 Iniciando entrenamiento con configuración binaria...\")\n",
|
458 |
+
"\n",
|
459 |
+
"# Callbacks opcionales (puedes comentar si prefieres entrenamiento simple)\n",
|
460 |
+
"from keras.callbacks import EarlyStopping, ReduceLROnPlateau\n",
|
461 |
+
"\n",
|
462 |
+
"early_stopping = EarlyStopping(\n",
|
463 |
+
" monitor='val_loss',\n",
|
464 |
+
" patience=5,\n",
|
465 |
+
" restore_best_weights=True\n",
|
466 |
+
")\n",
|
467 |
+
"\n",
|
468 |
+
"reduce_lr = ReduceLROnPlateau(\n",
|
469 |
+
" monitor='val_loss',\n",
|
470 |
+
" factor=0.2,\n",
|
471 |
+
" patience=3,\n",
|
472 |
+
" min_lr=1e-7\n",
|
473 |
+
")\n",
|
474 |
+
"\n",
|
475 |
+
"# 🔥 ENTRENAMIENTO BINARIO: usando y_train/y_test directos (SIN _encoded)\n",
|
476 |
+
"history = model.fit(\n",
|
477 |
+
" x_train, y_train, # ← Etiquetas binarias directas [0,1]\n",
|
478 |
+
" validation_data=(x_test, y_test), # ← Sin _encoded\n",
|
479 |
+
" batch_size=32, # Batch size eficiente\n",
|
480 |
+
" epochs=25,\n",
|
481 |
+
" callbacks=[early_stopping, reduce_lr],\n",
|
482 |
+
" verbose=1\n",
|
483 |
+
")\n",
|
484 |
+
"\n",
|
485 |
+
"print(\"✅ Entrenamiento completado!\")\n",
|
486 |
+
"print(\"📊 Configuración usada:\")\n",
|
487 |
+
"print(f\" • Loss: binary_crossentropy\")\n",
|
488 |
+
"print(f\" • Salida: 1 neurona sigmoid\")\n",
|
489 |
+
"print(f\" • Etiquetas: valores directos [0,1]\")\n",
|
490 |
+
"print(f\" • Batch size: 32\")\n",
|
491 |
+
"\n",
|
492 |
+
"# Entrenamiento simple alternativo (sin callbacks):\n",
|
493 |
+
"# history = model.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size=32, epochs=25)\n"
|
494 |
+
]
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"cell_type": "code",
|
498 |
+
"execution_count": 38,
|
499 |
+
"metadata": {},
|
500 |
+
"outputs": [
|
501 |
+
{
|
502 |
+
"name": "stdout",
|
503 |
+
"output_type": "stream",
|
504 |
+
"text": [
|
505 |
+
"Epoch 1/25\n",
|
506 |
+
"112/112 [==============================] - 44s 389ms/step - loss: 9.1723 - accuracy: 0.6275 - val_loss: 1.3144 - val_accuracy: 0.6789 - lr: 0.0010\n",
|
507 |
+
"Epoch 2/25\n",
|
508 |
+
"112/112 [==============================] - 46s 414ms/step - loss: 3.0741 - accuracy: 0.6599 - val_loss: 2.6101 - val_accuracy: 0.4452 - lr: 0.0010\n",
|
509 |
+
"Epoch 3/25\n",
|
510 |
+
"112/112 [==============================] - 77s 690ms/step - loss: 1.1167 - accuracy: 0.7277 - val_loss: 0.6525 - val_accuracy: 0.7833 - lr: 0.0010\n",
|
511 |
+
"Epoch 4/25\n",
|
512 |
+
"112/112 [==============================] - 71s 634ms/step - loss: 0.7091 - accuracy: 0.7630 - val_loss: 0.7093 - val_accuracy: 0.6854 - lr: 0.0010\n",
|
513 |
+
"Epoch 5/25\n",
|
514 |
+
"112/112 [==============================] - 72s 642ms/step - loss: 0.5801 - accuracy: 0.7748 - val_loss: 1.2357 - val_accuracy: 0.6540 - lr: 0.0010\n",
|
515 |
+
"Epoch 6/25\n",
|
516 |
+
"112/112 [==============================] - 69s 621ms/step - loss: 0.5239 - accuracy: 0.7854 - val_loss: 0.4493 - val_accuracy: 0.7755 - lr: 0.0010\n",
|
517 |
+
"Epoch 7/25\n",
|
518 |
+
"112/112 [==============================] - 68s 603ms/step - loss: 0.4193 - accuracy: 0.8331 - val_loss: 0.8670 - val_accuracy: 0.4517 - lr: 0.0010\n",
|
519 |
+
"Epoch 8/25\n",
|
520 |
+
"112/112 [==============================] - 69s 616ms/step - loss: 0.3989 - accuracy: 0.8364 - val_loss: 1.8077 - val_accuracy: 0.6619 - lr: 0.0010\n",
|
521 |
+
"Epoch 9/25\n",
|
522 |
+
"112/112 [==============================] - 66s 592ms/step - loss: 0.4061 - accuracy: 0.8308 - val_loss: 0.8780 - val_accuracy: 0.4452 - lr: 0.0010\n",
|
523 |
+
"Epoch 10/25\n",
|
524 |
+
"112/112 [==============================] - 68s 610ms/step - loss: 0.3163 - accuracy: 0.8784 - val_loss: 0.4764 - val_accuracy: 0.7441 - lr: 2.0000e-04\n",
|
525 |
+
"Epoch 11/25\n",
|
526 |
+
"112/112 [==============================] - 70s 623ms/step - loss: 0.2915 - accuracy: 0.8835 - val_loss: 0.3256 - val_accuracy: 0.8695 - lr: 2.0000e-04\n",
|
527 |
+
"Epoch 12/25\n",
|
528 |
+
"112/112 [==============================] - 67s 595ms/step - loss: 0.2836 - accuracy: 0.8913 - val_loss: 0.3999 - val_accuracy: 0.7990 - lr: 2.0000e-04\n",
|
529 |
+
"Epoch 13/25\n",
|
530 |
+
"112/112 [==============================] - 67s 595ms/step - loss: 0.2710 - accuracy: 0.8947 - val_loss: 0.2704 - val_accuracy: 0.8969 - lr: 2.0000e-04\n",
|
531 |
+
"Epoch 14/25\n",
|
532 |
+
"112/112 [==============================] - 74s 664ms/step - loss: 0.2442 - accuracy: 0.9064 - val_loss: 1.3001 - val_accuracy: 0.6619 - lr: 2.0000e-04\n",
|
533 |
+
"Epoch 15/25\n",
|
534 |
+
"112/112 [==============================] - 62s 557ms/step - loss: 0.2551 - accuracy: 0.9014 - val_loss: 0.7644 - val_accuracy: 0.5300 - lr: 2.0000e-04\n",
|
535 |
+
"Epoch 16/25\n",
|
536 |
+
"112/112 [==============================] - 75s 665ms/step - loss: 0.2464 - accuracy: 0.9092 - val_loss: 0.6758 - val_accuracy: 0.6345 - lr: 2.0000e-04\n",
|
537 |
+
"Epoch 17/25\n",
|
538 |
+
"112/112 [==============================] - 70s 627ms/step - loss: 0.2136 - accuracy: 0.9176 - val_loss: 0.2612 - val_accuracy: 0.9021 - lr: 4.0000e-05\n",
|
539 |
+
"Epoch 18/25\n",
|
540 |
+
"112/112 [==============================] - 67s 597ms/step - loss: 0.1968 - accuracy: 0.9182 - val_loss: 0.2603 - val_accuracy: 0.9073 - lr: 4.0000e-05\n",
|
541 |
+
"Epoch 19/25\n",
|
542 |
+
" 81/112 [====================>.........] - ETA: 17s - loss: 0.2041 - accuracy: 0.9236"
|
543 |
+
]
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"ename": "KeyboardInterrupt",
|
547 |
+
"evalue": "",
|
548 |
+
"output_type": "error",
|
549 |
+
"traceback": [
|
550 |
+
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
|
551 |
+
"\u001b[31mKeyboardInterrupt\u001b[39m Traceback (most recent call last)",
|
552 |
+
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[38]\u001b[39m\u001b[32m, line 16\u001b[39m\n\u001b[32m 8\u001b[39m reduce_lr = ReduceLROnPlateau(\n\u001b[32m 9\u001b[39m monitor=\u001b[33m'\u001b[39m\u001b[33mval_loss\u001b[39m\u001b[33m'\u001b[39m,\n\u001b[32m 10\u001b[39m factor=\u001b[32m0.2\u001b[39m,\n\u001b[32m 11\u001b[39m patience=\u001b[32m3\u001b[39m,\n\u001b[32m 12\u001b[39m min_lr=\u001b[32m1e-7\u001b[39m\n\u001b[32m 13\u001b[39m )\n\u001b[32m 15\u001b[39m \u001b[38;5;66;03m# Entrenamiento - puedes usar con o sin callbacks\u001b[39;00m\n\u001b[32m---> \u001b[39m\u001b[32m16\u001b[39m history = \u001b[43mmodel\u001b[49m\u001b[43m.\u001b[49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 17\u001b[39m \u001b[43m \u001b[49m\u001b[43mx_train\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_train_encoded\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 18\u001b[39m \u001b[43m \u001b[49m\u001b[43mvalidation_data\u001b[49m\u001b[43m=\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx_test\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43my_test_encoded\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 19\u001b[39m \u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[43m=\u001b[49m\u001b[32;43m16\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Como tenías originalmente\u001b[39;49;00m\n\u001b[32m 20\u001b[39m \u001b[43m \u001b[49m\u001b[43mepochs\u001b[49m\u001b[43m=\u001b[49m\u001b[32;43m25\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Como tenías originalmente\u001b[39;49;00m\n\u001b[32m 21\u001b[39m \u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[43m=\u001b[49m\u001b[43m[\u001b[49m\u001b[43mearly_stopping\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreduce_lr\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# Comenta esta línea si prefieres simple\u001b[39;49;00m\n\u001b[32m 22\u001b[39m \u001b[43m \u001b[49m\u001b[43mverbose\u001b[49m\u001b[43m=\u001b[49m\u001b[32;43m1\u001b[39;49m\n\u001b[32m 23\u001b[39m \u001b[43m)\u001b[49m\n\u001b[32m 25\u001b[39m \u001b[38;5;66;03m# Versión simple (como tu código original):\u001b[39;00m\n\u001b[32m 26\u001b[39m \u001b[38;5;66;03m# history = model.fit(x_train, y_train_encoded, validation_data=(x_test, y_test_encoded), batch_size=16, epochs=25)\u001b[39;00m\n",
|
553 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~/Documentos/myiopsitta-monachus-audios/.venv/lib/python3.11/site-packages/keras/src/utils/traceback_utils.py:65\u001b[39m, in \u001b[36mfilter_traceback.<locals>.error_handler\u001b[39m\u001b[34m(*args, **kwargs)\u001b[39m\n\u001b[32m 63\u001b[39m filtered_tb = \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m 64\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m---> \u001b[39m\u001b[32m65\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 66\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[32m 67\u001b[39m filtered_tb = _process_traceback_frames(e.__traceback__)\n",
|
554 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~/Documentos/myiopsitta-monachus-audios/.venv/lib/python3.11/site-packages/keras/src/engine/training.py:1807\u001b[39m, in \u001b[36mModel.fit\u001b[39m\u001b[34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[39m\n\u001b[32m 1799\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m tf.profiler.experimental.Trace(\n\u001b[32m 1800\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mtrain\u001b[39m\u001b[33m\"\u001b[39m,\n\u001b[32m 1801\u001b[39m epoch_num=epoch,\n\u001b[32m (...)\u001b[39m\u001b[32m 1804\u001b[39m _r=\u001b[32m1\u001b[39m,\n\u001b[32m 1805\u001b[39m ):\n\u001b[32m 1806\u001b[39m callbacks.on_train_batch_begin(step)\n\u001b[32m-> \u001b[39m\u001b[32m1807\u001b[39m tmp_logs = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mtrain_function\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1808\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m data_handler.should_sync:\n\u001b[32m 1809\u001b[39m context.async_wait()\n",
|
555 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~/Documentos/myiopsitta-monachus-audios/.venv/lib/python3.11/site-packages/tensorflow/python/util/traceback_utils.py:150\u001b[39m, in \u001b[36mfilter_traceback.<locals>.error_handler\u001b[39m\u001b[34m(*args, **kwargs)\u001b[39m\n\u001b[32m 148\u001b[39m filtered_tb = \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m 149\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m150\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 151\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[32m 152\u001b[39m filtered_tb = _process_traceback_frames(e.__traceback__)\n",
|
556 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~/Documentos/myiopsitta-monachus-audios/.venv/lib/python3.11/site-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py:832\u001b[39m, in \u001b[36mFunction.__call__\u001b[39m\u001b[34m(self, *args, **kwds)\u001b[39m\n\u001b[32m 829\u001b[39m compiler = \u001b[33m\"\u001b[39m\u001b[33mxla\u001b[39m\u001b[33m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m._jit_compile \u001b[38;5;28;01melse\u001b[39;00m \u001b[33m\"\u001b[39m\u001b[33mnonXla\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 831\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m OptionalXlaContext(\u001b[38;5;28mself\u001b[39m._jit_compile):\n\u001b[32m--> \u001b[39m\u001b[32m832\u001b[39m result = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_call\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 834\u001b[39m new_tracing_count = \u001b[38;5;28mself\u001b[39m.experimental_get_tracing_count()\n\u001b[32m 835\u001b[39m without_tracing = (tracing_count == new_tracing_count)\n",
|
557 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~/Documentos/myiopsitta-monachus-audios/.venv/lib/python3.11/site-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py:868\u001b[39m, in \u001b[36mFunction._call\u001b[39m\u001b[34m(self, *args, **kwds)\u001b[39m\n\u001b[32m 865\u001b[39m \u001b[38;5;28mself\u001b[39m._lock.release()\n\u001b[32m 866\u001b[39m \u001b[38;5;66;03m# In this case we have created variables on the first call, so we run the\u001b[39;00m\n\u001b[32m 867\u001b[39m \u001b[38;5;66;03m# defunned version which is guaranteed to never create variables.\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m868\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mtracing_compilation\u001b[49m\u001b[43m.\u001b[49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 869\u001b[39m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_no_variable_creation_config\u001b[49m\n\u001b[32m 870\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 871\u001b[39m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m._variable_creation_config \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m 872\u001b[39m \u001b[38;5;66;03m# Release the lock early so that multiple threads can perform the call\u001b[39;00m\n\u001b[32m 873\u001b[39m \u001b[38;5;66;03m# in parallel.\u001b[39;00m\n\u001b[32m 874\u001b[39m \u001b[38;5;28mself\u001b[39m._lock.release()\n",
|
558 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~/Documentos/myiopsitta-monachus-audios/.venv/lib/python3.11/site-packages/tensorflow/python/eager/polymorphic_function/tracing_compilation.py:139\u001b[39m, in \u001b[36mcall_function\u001b[39m\u001b[34m(args, kwargs, tracing_options)\u001b[39m\n\u001b[32m 137\u001b[39m bound_args = function.function_type.bind(*args, **kwargs)\n\u001b[32m 138\u001b[39m flat_inputs = function.function_type.unpack_inputs(bound_args)\n\u001b[32m--> \u001b[39m\u001b[32m139\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunction\u001b[49m\u001b[43m.\u001b[49m\u001b[43m_call_flat\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# pylint: disable=protected-access\u001b[39;49;00m\n\u001b[32m 140\u001b[39m \u001b[43m \u001b[49m\u001b[43mflat_inputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcaptured_inputs\u001b[49m\u001b[43m=\u001b[49m\u001b[43mfunction\u001b[49m\u001b[43m.\u001b[49m\u001b[43mcaptured_inputs\u001b[49m\n\u001b[32m 141\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
559 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~/Documentos/myiopsitta-monachus-audios/.venv/lib/python3.11/site-packages/tensorflow/python/eager/polymorphic_function/concrete_function.py:1323\u001b[39m, in \u001b[36mConcreteFunction._call_flat\u001b[39m\u001b[34m(self, tensor_inputs, captured_inputs)\u001b[39m\n\u001b[32m 1319\u001b[39m possible_gradient_type = gradients_util.PossibleTapeGradientTypes(args)\n\u001b[32m 1320\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m (possible_gradient_type == gradients_util.POSSIBLE_GRADIENT_TYPES_NONE\n\u001b[32m 1321\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m executing_eagerly):\n\u001b[32m 1322\u001b[39m \u001b[38;5;66;03m# No tape is watching; skip to running the function.\u001b[39;00m\n\u001b[32m-> \u001b[39m\u001b[32m1323\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_inference_function\u001b[49m\u001b[43m.\u001b[49m\u001b[43mcall_preflattened\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1324\u001b[39m forward_backward = \u001b[38;5;28mself\u001b[39m._select_forward_and_backward_functions(\n\u001b[32m 1325\u001b[39m args,\n\u001b[32m 1326\u001b[39m possible_gradient_type,\n\u001b[32m 1327\u001b[39m executing_eagerly)\n\u001b[32m 1328\u001b[39m forward_function, args_with_tangents = forward_backward.forward()\n",
|
560 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~/Documentos/myiopsitta-monachus-audios/.venv/lib/python3.11/site-packages/tensorflow/python/eager/polymorphic_function/atomic_function.py:216\u001b[39m, in \u001b[36mAtomicFunction.call_preflattened\u001b[39m\u001b[34m(self, args)\u001b[39m\n\u001b[32m 214\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mcall_preflattened\u001b[39m(\u001b[38;5;28mself\u001b[39m, args: Sequence[core.Tensor]) -> Any:\n\u001b[32m 215\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"Calls with flattened tensor inputs and returns the structured output.\"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m216\u001b[39m flat_outputs = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mcall_flat\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 217\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m.function_type.pack_output(flat_outputs)\n",
|
561 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~/Documentos/myiopsitta-monachus-audios/.venv/lib/python3.11/site-packages/tensorflow/python/eager/polymorphic_function/atomic_function.py:251\u001b[39m, in \u001b[36mAtomicFunction.call_flat\u001b[39m\u001b[34m(self, *args)\u001b[39m\n\u001b[32m 249\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m record.stop_recording():\n\u001b[32m 250\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m._bound_context.executing_eagerly():\n\u001b[32m--> \u001b[39m\u001b[32m251\u001b[39m outputs = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43m_bound_context\u001b[49m\u001b[43m.\u001b[49m\u001b[43mcall_function\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 252\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 253\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mlist\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 254\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mfunction_type\u001b[49m\u001b[43m.\u001b[49m\u001b[43mflat_outputs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 255\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 256\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[32m 257\u001b[39m outputs = make_call_op_in_graph(\n\u001b[32m 258\u001b[39m \u001b[38;5;28mself\u001b[39m,\n\u001b[32m 259\u001b[39m \u001b[38;5;28mlist\u001b[39m(args),\n\u001b[32m 260\u001b[39m \u001b[38;5;28mself\u001b[39m._bound_context.function_call_options.as_attrs(),\n\u001b[32m 261\u001b[39m )\n",
|
562 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~/Documentos/myiopsitta-monachus-audios/.venv/lib/python3.11/site-packages/tensorflow/python/eager/context.py:1486\u001b[39m, in \u001b[36mContext.call_function\u001b[39m\u001b[34m(self, name, tensor_inputs, num_outputs)\u001b[39m\n\u001b[32m 1484\u001b[39m cancellation_context = cancellation.context()\n\u001b[32m 1485\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m cancellation_context \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m-> \u001b[39m\u001b[32m1486\u001b[39m outputs = \u001b[43mexecute\u001b[49m\u001b[43m.\u001b[49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 1487\u001b[39m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m.\u001b[49m\u001b[43mdecode\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mutf-8\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1488\u001b[39m \u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m=\u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1489\u001b[39m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m=\u001b[49m\u001b[43mtensor_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1490\u001b[39m \u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m=\u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1491\u001b[39m \u001b[43m \u001b[49m\u001b[43mctx\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 1492\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1493\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[32m 1494\u001b[39m outputs = execute.execute_with_cancellation(\n\u001b[32m 1495\u001b[39m name.decode(\u001b[33m\"\u001b[39m\u001b[33mutf-8\u001b[39m\u001b[33m\"\u001b[39m),\n\u001b[32m 1496\u001b[39m num_outputs=num_outputs,\n\u001b[32m (...)\u001b[39m\u001b[32m 1500\u001b[39m cancellation_manager=cancellation_context,\n\u001b[32m 1501\u001b[39m )\n",
|
563 |
+
"\u001b[36mFile \u001b[39m\u001b[32m~/Documentos/myiopsitta-monachus-audios/.venv/lib/python3.11/site-packages/tensorflow/python/eager/execute.py:53\u001b[39m, in \u001b[36mquick_execute\u001b[39m\u001b[34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001b[39m\n\u001b[32m 51\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m 52\u001b[39m ctx.ensure_initialized()\n\u001b[32m---> \u001b[39m\u001b[32m53\u001b[39m tensors = \u001b[43mpywrap_tfe\u001b[49m\u001b[43m.\u001b[49m\u001b[43mTFE_Py_Execute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mctx\u001b[49m\u001b[43m.\u001b[49m\u001b[43m_handle\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mop_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 54\u001b[39m \u001b[43m \u001b[49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattrs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_outputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 55\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m core._NotOkStatusException \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[32m 56\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
|
564 |
+
"\u001b[31mKeyboardInterrupt\u001b[39m: "
|
565 |
+
]
|
566 |
+
}
|
567 |
+
],
|
568 |
+
"source": [
|
569 |
+
"# Callbacks para entrenamiento robusto (opcional - puedes comentar si prefieres simple)\n",
|
570 |
+
"early_stopping = EarlyStopping(\n",
|
571 |
+
" monitor='val_loss',\n",
|
572 |
+
" patience=5,\n",
|
573 |
+
" restore_best_weights=True\n",
|
574 |
+
")\n",
|
575 |
+
"\n",
|
576 |
+
"reduce_lr = ReduceLROnPlateau(\n",
|
577 |
+
" monitor='val_loss',\n",
|
578 |
+
" factor=0.2,\n",
|
579 |
+
" patience=3,\n",
|
580 |
+
" min_lr=1e-7\n",
|
581 |
+
")\n",
|
582 |
+
"\n",
|
583 |
+
"# Entrenamiento - puedes usar con o sin callbacks\n",
|
584 |
+
"history = model.fit(\n",
|
585 |
+
" x_train, y_train_encoded,\n",
|
586 |
+
" validation_data=(x_test, y_test_encoded),\n",
|
587 |
+
" batch_size=16, # Como tenías originalmente\n",
|
588 |
+
" epochs=25, # Como tenías originalmente\n",
|
589 |
+
" callbacks=[early_stopping, reduce_lr], # Comenta esta línea si prefieres simple\n",
|
590 |
+
" verbose=1\n",
|
591 |
+
")\n",
|
592 |
+
"\n",
|
593 |
+
"# Versión simple (como tu código original):\n",
|
594 |
+
"# history = model.fit(x_train, y_train_encoded, validation_data=(x_test, y_test_encoded), batch_size=16, epochs=25)\n"
|
595 |
+
]
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"cell_type": "code",
|
599 |
+
"execution_count": null,
|
600 |
+
"metadata": {},
|
601 |
+
"outputs": [],
|
602 |
+
"source": [
|
603 |
+
"# 📊 EVALUACIÓN BINARIA COMPLETA\n",
|
604 |
+
"import matplotlib.pyplot as plt\n",
|
605 |
+
"from sklearn.metrics import confusion_matrix, classification_report\n",
|
606 |
+
"import seaborn as sns\n",
|
607 |
+
"\n",
|
608 |
+
"# Gráficos de entrenamiento\n",
|
609 |
+
"fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))\n",
|
610 |
+
"\n",
|
611 |
+
"# Accuracy\n",
|
612 |
+
"ax1.plot(history.history['accuracy'], label='Training Accuracy')\n",
|
613 |
+
"ax1.plot(history.history['val_accuracy'], label='Validation Accuracy')\n",
|
614 |
+
"ax1.set_title('Model Accuracy (Binary)')\n",
|
615 |
+
"ax1.set_xlabel('Epoch')\n",
|
616 |
+
"ax1.set_ylabel('Accuracy')\n",
|
617 |
+
"ax1.legend()\n",
|
618 |
+
"\n",
|
619 |
+
"# Loss\n",
|
620 |
+
"ax2.plot(history.history['loss'], label='Training Loss')\n",
|
621 |
+
"ax2.plot(history.history['val_loss'], label='Validation Loss')\n",
|
622 |
+
"ax2.set_title('Model Loss (Binary)')\n",
|
623 |
+
"ax2.set_xlabel('Epoch')\n",
|
624 |
+
"ax2.set_ylabel('Loss')\n",
|
625 |
+
"ax2.legend()\n",
|
626 |
+
"\n",
|
627 |
+
"plt.tight_layout()\n",
|
628 |
+
"plt.show()\n",
|
629 |
+
"\n",
|
630 |
+
"# 🎯 PREDICCIONES BINARIAS (diferentes a categorical)\n",
|
631 |
+
"y_pred_probs = model.predict(x_test) # Probabilidades de ser cotorra [0-1]\n",
|
632 |
+
"y_pred_classes = (y_pred_probs > 0.5).astype(int).flatten() # Convertir a clases [0,1]\n",
|
633 |
+
"\n",
|
634 |
+
"print(\"🔍 EJEMPLOS DE PREDICCIÓN BINARIA:\")\n",
|
635 |
+
"print(f\"Probabilidades: {y_pred_probs[:5].flatten()}\")\n",
|
636 |
+
"print(f\"Clases predichas: {y_pred_classes[:5]}\")\n",
|
637 |
+
"print(f\"Clases reales: {y_test[:5]}\")\n",
|
638 |
+
"\n",
|
639 |
+
"# Matriz de confusión BINARIA\n",
|
640 |
+
"cm = confusion_matrix(y_test, y_pred_classes) # ← Usando y_test directo (no _encoded)\n",
|
641 |
+
"plt.figure(figsize=(8, 6))\n",
|
642 |
+
"sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',\n",
|
643 |
+
" xticklabels=['No Cotorra', 'Cotorra'],\n",
|
644 |
+
" yticklabels=['No Cotorra', 'Cotorra'])\n",
|
645 |
+
"plt.title('Confusion Matrix (Binary)')\n",
|
646 |
+
"plt.ylabel('True Label')\n",
|
647 |
+
"plt.xlabel('Predicted Label')\n",
|
648 |
+
"plt.show()\n",
|
649 |
+
"\n",
|
650 |
+
"# Reporte de clasificación BINARIA\n",
|
651 |
+
"print(\"\\n📋 CLASSIFICATION REPORT (BINARY):\")\n",
|
652 |
+
"print(classification_report(y_test, y_pred_classes, target_names=['No Cotorra', 'Cotorra']))\n",
|
653 |
+
"\n",
|
654 |
+
"# Estadísticas adicionales\n",
|
655 |
+
"from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score\n",
|
656 |
+
"\n",
|
657 |
+
"accuracy = accuracy_score(y_test, y_pred_classes)\n",
|
658 |
+
"precision = precision_score(y_test, y_pred_classes)\n",
|
659 |
+
"recall = recall_score(y_test, y_pred_classes)\n",
|
660 |
+
"f1 = f1_score(y_test, y_pred_classes)\n",
|
661 |
+
"\n",
|
662 |
+
"print(f\"\\n🎯 MÉTRICAS BINARIAS:\")\n",
|
663 |
+
"print(f\" • Accuracy: {accuracy:.4f}\")\n",
|
664 |
+
"print(f\" • Precision: {precision:.4f}\")\n",
|
665 |
+
"print(f\" • Recall: {recall:.4f}\")\n",
|
666 |
+
"print(f\" • F1-Score: {f1:.4f}\")\n",
|
667 |
+
"\n",
|
668 |
+
"# Guardar modelo binario\n",
|
669 |
+
"model.save('modelo_cotorra_binario_optimizado.h5')\n",
|
670 |
+
"print(\"\\n💾 Modelo guardado como 'modelo_cotorra_binario_optimizado.h5'\")\n",
|
671 |
+
"print(\"🚀 Configuración: binary_crossentropy + 1 neurona sigmoid + etiquetas [0,1]\")\n"
|
672 |
+
]
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"cell_type": "raw",
|
676 |
+
"metadata": {
|
677 |
+
"vscode": {
|
678 |
+
"languageId": "raw"
|
679 |
+
}
|
680 |
+
},
|
681 |
+
"source": [
|
682 |
+
"## 📋 **RESUMEN: Binary vs Categorical Cross-Entropy**\n",
|
683 |
+
"\n",
|
684 |
+
"### ✅ **CONFIGURACIÓN BINARIA (actual - MÁS EFICIENTE)**\n",
|
685 |
+
"\n",
|
686 |
+
"| Aspecto | Configuración |\n",
|
687 |
+
"|---------|---------------|\n",
|
688 |
+
"| **Problema** | 2 clases: cotorra vs no-cotorra |\n",
|
689 |
+
"| **Neuronas salida** | `Dense(1, activation='sigmoid')` |\n",
|
690 |
+
"| **Loss function** | `binary_crossentropy` |\n",
|
691 |
+
"| **Etiquetas** | `[0, 1, 0, 1, ...]` (valores directos) |\n",
|
692 |
+
"| **Predicción** | `model.predict()` → `[0.23, 0.87, ...]` (probabilidades) |\n",
|
693 |
+
"| **Ventajas** | ✅ Más eficiente, menos parámetros, más natural |\n",
|
694 |
+
"\n",
|
695 |
+
"### 🔄 **CONFIGURACIÓN CATEGORICAL (alternativa)**\n",
|
696 |
+
"\n",
|
697 |
+
"| Aspecto | Configuración |\n",
|
698 |
+
"|---------|---------------|\n",
|
699 |
+
"| **Problema** | 2+ clases (extensible) |\n",
|
700 |
+
"| **Neuronas salida** | `Dense(2, activation='softmax')` |\n",
|
701 |
+
"| **Loss function** | `categorical_crossentropy` |\n",
|
702 |
+
"| **Etiquetas** | `[[1,0], [0,1], [1,0], ...]` (one-hot) |\n",
|
703 |
+
"| **Predicción** | `model.predict()` → `[[0.77,0.23], [0.13,0.87], ...]` |\n",
|
704 |
+
"| **Ventajas** | ✅ Extensible a más clases, probabilidades explícitas |\n",
|
705 |
+
"\n",
|
706 |
+
"### 🎯 **¿CUÁL USAR PARA COTORRAS?**\n",
|
707 |
+
"\n",
|
708 |
+
"**Para tu caso (cotorra vs no-cotorra): BINARY es mejor porque:**\n",
|
709 |
+
"\n",
|
710 |
+
"1. **Más eficiente**: 1 neurona vs 2 neuronas = menos parámetros\n",
|
711 |
+
"2. **Más natural**: Solo 2 clases, no necesitas extensibilidad \n",
|
712 |
+
"3. **Más rápido**: Menos cómputo y memoria\n",
|
713 |
+
"4. **Salida intuitiva**: Probabilidad directa de ser cotorra\n",
|
714 |
+
"5. **Más simple**: Sin `to_categorical()`, etiquetas directas\n",
|
715 |
+
"\n",
|
716 |
+
"### ❌ **TU PROBLEMA ORIGINAL**\n",
|
717 |
+
"```python\n",
|
718 |
+
"# INCOMPATIBLE: binary loss + categorical data\n",
|
719 |
+
"model.add(Dense(2, activation='softmax'))\n",
|
720 |
+
"model.compile(loss='binary_crossentropy') # ← Binary loss\n",
|
721 |
+
"y_train = to_categorical(y_train) # ← Categorical data\n",
|
722 |
+
"# RESULTADO: No puede aprender correctamente\n",
|
723 |
+
"```\n",
|
724 |
+
"\n",
|
725 |
+
"### ✅ **SOLUCIÓN APLICADA**\n",
|
726 |
+
"```python\n",
|
727 |
+
"# COMPATIBLE: binary loss + binary data\n",
|
728 |
+
"model.add(Dense(1, activation='sigmoid')) # ← 1 neurona\n",
|
729 |
+
"model.compile(loss='binary_crossentropy') # ← Binary loss \n",
|
730 |
+
"y_train = [0, 1, 0, 1, ...] # ← Binary data\n",
|
731 |
+
"# RESULTADO: ¡Aprende correctamente!\n",
|
732 |
+
"```\n"
|
733 |
+
]
|
734 |
+
}
|
735 |
+
],
|
736 |
+
"metadata": {
|
737 |
+
"kernelspec": {
|
738 |
+
"display_name": ".venv",
|
739 |
+
"language": "python",
|
740 |
+
"name": "python3"
|
741 |
+
},
|
742 |
+
"language_info": {
|
743 |
+
"codemirror_mode": {
|
744 |
+
"name": "ipython",
|
745 |
+
"version": 3
|
746 |
+
},
|
747 |
+
"file_extension": ".py",
|
748 |
+
"mimetype": "text/x-python",
|
749 |
+
"name": "python",
|
750 |
+
"nbconvert_exporter": "python",
|
751 |
+
"pygments_lexer": "ipython3",
|
752 |
+
"version": "3.11.13"
|
753 |
+
}
|
754 |
+
},
|
755 |
+
"nbformat": 4,
|
756 |
+
"nbformat_minor": 2
|
757 |
+
}
|
src/training/src/parakeets_cnn_training (1).ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|