juliogu81's picture
Agregar primeros 1000 archivos de audio
3b8a04e
import os
from typing import List
import librosa
import numpy as np
from scipy.signal import butter, lfilter, freqz
from pydub import AudioSegment
from pathlib import Path
# Configuración de directorios
INPUT_DIR = "./data/crudo/clips/5_segundos/no_cotorra" # Directorio con los archivos de audio
OUTPUT_DIR = "./data/crudo/clips/3_segundos/no_cotorra" # Directorio donde se guardarán los clips
THRESHOLD_DB = -25 # Umbral en dB
TARGET_DURATION = 3 # Duración de los clips en segundos
def butter_bandpass(lowcut: float, highcut: float, fs: float, order: int = 5):
"""Diseña un filtro pasabanda Butterworth."""
return butter(order, [lowcut, highcut], fs=fs, btype='band')
def butter_bandpass_filter(data: np.ndarray, lowcut: float, highcut: float, fs: float, order: int = 5) -> np.ndarray:
"""Aplica un filtro pasabanda Butterworth a los datos."""
b, a = butter_bandpass(lowcut, highcut, fs, order=order)
return lfilter(b, a, data)
class AudioProcessor:
def __init__(self, audio_path: str, target_duration: float = 3):
self.audio_path = audio_path
self.target_duration = target_duration
print(f"Cargando: {audio_path}")
self.y, self.sr = librosa.load(audio_path, sr=None)
self.duracion_total = librosa.get_duration(y=self.y, sr=self.sr)
print("Aplicando filtro pasabanda (2kHz - 8kHz)...")
self.y_filtered = butter_bandpass_filter(self.y, 2000, 8000, self.sr, order=5)
self.y_filtered = librosa.util.normalize(self.y_filtered)
print("Audio cargado y preprocesado.")
def detect_events(self, threshold_db: float, window_size: float = 0.02, min_duration: float = 0.1, merge_gap: float = 0.5) -> List[tuple[float, float]]:
window_length = int(window_size * self.sr)
rms = librosa.feature.rms(y=self.y_filtered, frame_length=window_length, hop_length=window_length // 2)[0]
times = librosa.frames_to_time(np.arange(len(rms)), sr=self.sr, hop_length=window_length // 2)
rms_db = librosa.amplitude_to_db(rms, ref=np.max)
events = []
in_event = False
event_start = -1
for i, db in enumerate(rms_db):
if db > threshold_db and not in_event:
in_event = True
event_start = times[i]
elif db <= threshold_db and in_event:
in_event = False
event_end = times[i]
if event_end - event_start >= min_duration:
events.append((event_start, event_end))
if in_event and self.duracion_total - event_start >= min_duration:
events.append((event_start, self.duracion_total))
# Fusionar eventos cercanos
merged = []
if events:
cur_start, cur_end = events[0]
for start, end in events[1:]:
if start - cur_end < merge_gap:
cur_end = end
else:
merged.append((cur_start, cur_end))
cur_start, cur_end = start, end
merged.append((cur_start, cur_end))
return merged
def generate_clips(self, threshold_db: float, output_dir: str) -> List[AudioSegment]:
events = self.detect_events(threshold_db)
audio_pydub = AudioSegment.from_file(self.audio_path)
clips = []
last_center = -float('inf')
os.makedirs(output_dir, exist_ok=True)
base_name = Path(self.audio_path).stem
for i, (start, end) in enumerate(events):
center = (start + end) / 2
if abs(center - last_center) < self.target_duration:
continue
clip_start = max(0, int((center - self.target_duration / 2) * 1000))
clip_end = min(len(audio_pydub), int((center + self.target_duration / 2) * 1000))
if (clip_end - clip_start) >= int((self.target_duration - 1) * 1000):
clip = audio_pydub[clip_start:clip_end]
clips.append(clip)
last_center = center
output_path = os.path.join(output_dir, f"{base_name}_clip_{i+1}.wav")
clip.export(output_path, format="wav")
print(f"Guardado: {output_path} (centro: {center:.2f}s)")
return clips
def process_directory(input_dir: str, output_dir: str, threshold_db: float = -25, target_duration: float = 3.7):
"""
Procesa todos los archivos de audio en un directorio y extrae clips.
Args:
input_dir: Directorio con los archivos de audio
output_dir: Directorio donde se guardarán los clips
threshold_db: Umbral en dB para detectar eventos
target_duration: Duración objetivo de cada clip en segundos
"""
# Crear directorio de salida si no existe
os.makedirs(output_dir, exist_ok=True)
# Obtener lista de archivos de audio
audio_extensions = {'.mp3', '.wav', '.m4a', '.flac', '.ogg'}
audio_files = [f for f in os.listdir(input_dir)
if os.path.splitext(f)[1].lower() in audio_extensions]
if not audio_files:
print(f"No se encontraron archivos de audio en {input_dir}")
return
print(f"Procesando {len(audio_files)} archivos de audio...")
# Procesar cada archivo
for audio_file in audio_files:
input_path = os.path.join(input_dir, audio_file)
print(f"\nProcesando: {audio_file}")
try:
processor = AudioProcessor(input_path, target_duration)
clips = processor.generate_clips(threshold_db, output_dir)
print(f"Se generaron {len(clips)} clips de {audio_file}")
except Exception as e:
print(f"Error procesando {audio_file}: {str(e)}")
if __name__ == "__main__":
# Procesar todos los archivos de audio en el directorio de entrada
process_directory(INPUT_DIR, OUTPUT_DIR, THRESHOLD_DB, TARGET_DURATION)