Datasets:
Tasks:
Question Answering
Formats:
csv
Sub-tasks:
closed-domain-qa
Languages:
English
Size:
1M - 10M
License:
File size: 3,680 Bytes
3417e00 2e07e81 3417e00 2e07e81 b8df7d0 2e07e81 b8df7d0 2e07e81 b8df7d0 2e07e81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
---
annotations_creators:
- machine-generated
language:
- en
language_creators:
- machine-generated
license:
- cc-by-2.0
multilinguality:
- monolingual
pretty_name: Quasimodo
size_categories:
- 100M<n<1B
source_datasets:
- original
tags:
- knowledge base
- commonsense
task_categories:
- question-answering
task_ids:
- closed-domain-qa
---
# Dataset Card for Quasimodo
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Dataset Creation](#dataset-creation)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/commonsense/quasimodo
- **Repository:** https://github.com/Aunsiels/CSK
- **Paper:** Romero et al., Commonsense Properties from Query Logs and Question Answering Forums, CIKM, 2019
### Dataset Summary
A commonsense knowledge base constructed automatically from question-answering forums and query logs.
### Supported Tasks and Leaderboards
Can be useful for tasks requiring external knowledge such as question answering.
### Languages
English
## Dataset Structure
### Data Instances
```python
{
"subject": "elephant",
"predicate": "has_body_part"
"object": "trunk",
"modality": "TBC[so long trunks] x#x2 // TBC[long trunks] x#x9 // TBC[big trunks] x#x6 // TBC[long trunk] x#x1 // TBC[such big trunks] x#x1 0 0.9999667967035647 elephants have trunks x#x34 x#xGoogle Autocomplete, Bing Autocomplete, Yahoo Questions, Answers.com Questions, Reddit Questions // a elephants have trunks x#x2 x#xGoogle Autocomplete // a elephant have a trunk x#x2 x#xGoogle Autocomplete // elephants have so long trunks x#x2 x#xGoogle Autocomplete // elephants have long trunks x#x8 x#xGoogle Autocomplete, Yahoo Questions, Answers.com Questions // elephants have big trunks x#x6 x#xGoogle Autocomplete, Answers.com Questions, Reddit Questions // elephants have trunk x#x3 x#xGoogle Autocomplete, Yahoo Questions // elephant have long trunks x#x1 x#xGoogle Autocomplete // elephant has a trunk x#x1 x#xGoogle Autocomplete // elephants have a trunk x#x2 x#xAnswers.com Questions // an elephant has a long trunk x#x1 x#xAnswers.com Questions // elephant have trunks x#x1 x#xAnswers.com Questions // elephants have such big trunks x#x1 x#xReddit Questions",
"score": 0.9999667967668732,
"local_sigma": 1.0
}
```
### Data Fields
- subject: The subject of the triple
- predicate: The predicate of the triple
- object: The object of the triple
- modality: Modalities associated with the triples with their counts. TBC means the object can be further refined to the listed objects
- is_negative: 1 if the statement was negated
- score: salience score of the supervised scoring model
- local sigma: strict conditional probability of observing a (predicate, object) with a specific subject. I.e., a measure of how unique a statement is. E.g., local_sigma(lawyers, defend, serial_killers) = 1, local_sigma(lawyers, make, money) = 0.01, even though both statements have a similar score of 0.99.
## Dataset Creation
See original paper.
## Additional Information
### Licensing Information
CC-BY 2.0
### Citation Information
Romero et al., Commonsense Properties from Query Logs and Question Answering Forums, CIKM, 2019
|