Added script to preprocess data
Browse files- AstroM3Dataset.py +0 -1
- preprocess.py +244 -0
AstroM3Dataset.py
CHANGED
|
@@ -99,7 +99,6 @@ class AstroM3Dataset(datasets.GeneratorBasedBuilder):
|
|
| 99 |
|
| 100 |
def _get_photometry(self, file_name):
|
| 101 |
"""Loads photometric light curve data from a compressed file."""
|
| 102 |
-
|
| 103 |
csv = BytesIO()
|
| 104 |
file_name = file_name.replace(' ', '') # Ensure filenames are correctly formatted
|
| 105 |
data_path = f'vardb_files/{file_name}.dat'
|
|
|
|
| 99 |
|
| 100 |
def _get_photometry(self, file_name):
|
| 101 |
"""Loads photometric light curve data from a compressed file."""
|
|
|
|
| 102 |
csv = BytesIO()
|
| 103 |
file_name = file_name.replace(' ', '') # Ensure filenames are correctly formatted
|
| 104 |
data_path = f'vardb_files/{file_name}.dat'
|
preprocess.py
ADDED
|
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import defaultdict
|
| 2 |
+
|
| 3 |
+
import datasets
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
import numpy as np
|
| 6 |
+
from scipy import stats
|
| 7 |
+
|
| 8 |
+
METADATA_FUNC = {
|
| 9 |
+
"abs": [
|
| 10 |
+
"mean_vmag",
|
| 11 |
+
"phot_g_mean_mag",
|
| 12 |
+
"phot_bp_mean_mag",
|
| 13 |
+
"phot_rp_mean_mag",
|
| 14 |
+
"j_mag",
|
| 15 |
+
"h_mag",
|
| 16 |
+
"k_mag",
|
| 17 |
+
"w1_mag",
|
| 18 |
+
"w2_mag",
|
| 19 |
+
"w3_mag",
|
| 20 |
+
"w4_mag",
|
| 21 |
+
],
|
| 22 |
+
"cos": ["l"],
|
| 23 |
+
"sin": ["b"],
|
| 24 |
+
"log": ["period"]
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def preprocess_spectra(example):
|
| 29 |
+
"""
|
| 30 |
+
Preprocess spectral data. Steps:
|
| 31 |
+
- Interpolate flux and flux error to a fixed wavelength grid (3850 to 9000 Å).
|
| 32 |
+
- Normalize flux using mean and median absolute deviation (MAD).
|
| 33 |
+
- Append MAD as an auxiliary feature.
|
| 34 |
+
"""
|
| 35 |
+
spectra = example['spectra']
|
| 36 |
+
wavelengths = spectra[:, 0]
|
| 37 |
+
flux = spectra[:, 1]
|
| 38 |
+
flux_err = spectra[:, 2]
|
| 39 |
+
|
| 40 |
+
# Interpolate flux and flux error onto a fixed grid
|
| 41 |
+
new_wavelengths = np.arange(3850, 9000, 2)
|
| 42 |
+
flux = np.interp(new_wavelengths, wavelengths, flux)
|
| 43 |
+
flux_err = np.interp(new_wavelengths, wavelengths, flux_err)
|
| 44 |
+
|
| 45 |
+
# Normalize flux and flux error
|
| 46 |
+
mean = np.mean(flux)
|
| 47 |
+
mad = stats.median_abs_deviation(flux[flux != 0])
|
| 48 |
+
|
| 49 |
+
flux = (flux - mean) / mad
|
| 50 |
+
flux_err = flux_err / mad
|
| 51 |
+
aux_values = np.full_like(flux, np.log10(mad)) # Store MAD as an auxiliary feature
|
| 52 |
+
|
| 53 |
+
# Stack processed data into a single array
|
| 54 |
+
spectra = np.vstack([flux, flux_err, aux_values])
|
| 55 |
+
example['spectra'] = spectra
|
| 56 |
+
|
| 57 |
+
return example
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def preprocess_lc(example):
|
| 61 |
+
"""
|
| 62 |
+
Preprocess photometry (light curve) data. Steps:
|
| 63 |
+
- Remove duplicate time entries.
|
| 64 |
+
- Sort by Heliocentric Julian Date (HJD).
|
| 65 |
+
- Normalize flux and flux error using mean and median absolute deviation (MAD).
|
| 66 |
+
- Scale time values between 0 and 1.
|
| 67 |
+
- Append auxiliary features (log MAD and time span delta_t).
|
| 68 |
+
"""
|
| 69 |
+
X = example['photometry']
|
| 70 |
+
aux_values = np.stack(list(example['metadata']['photo_cols'].values()))
|
| 71 |
+
|
| 72 |
+
# Remove duplicate entries
|
| 73 |
+
X = np.unique(X, axis=0)
|
| 74 |
+
|
| 75 |
+
# Sort based on HJD
|
| 76 |
+
sorted_indices = np.argsort(X[:, 0])
|
| 77 |
+
X = X[sorted_indices]
|
| 78 |
+
|
| 79 |
+
# Normalize flux and flux error
|
| 80 |
+
mean = X[:, 1].mean()
|
| 81 |
+
mad = stats.median_abs_deviation(X[:, 1])
|
| 82 |
+
X[:, 1] = (X[:, 1] - mean) / mad
|
| 83 |
+
X[:, 2] = X[:, 2] / mad
|
| 84 |
+
|
| 85 |
+
# Compute delta_t (time span of the light curve in years)
|
| 86 |
+
delta_t = (X[:, 0].max() - X[:, 0].min()) / 365
|
| 87 |
+
|
| 88 |
+
# Scale time from 0 to 1
|
| 89 |
+
X[:, 0] = (X[:, 0] - X[:, 0].min()) / (X[:, 0].max() - X[:, 0].min())
|
| 90 |
+
|
| 91 |
+
# Add MAD and delta_t to auxiliary metadata features
|
| 92 |
+
aux_values = np.concatenate((aux_values, [np.log10(mad), delta_t]))
|
| 93 |
+
|
| 94 |
+
# Add auxiliary features to the sequence
|
| 95 |
+
aux_values = np.tile(aux_values, (X.shape[0], 1))
|
| 96 |
+
X = np.concatenate((X, aux_values), axis=-1)
|
| 97 |
+
|
| 98 |
+
example['photometry'] = X
|
| 99 |
+
return example
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def transform_metadata(example):
|
| 103 |
+
"""
|
| 104 |
+
Transforms the metadata of an example based on METADATA_FUNC.
|
| 105 |
+
"""
|
| 106 |
+
metadata = example["metadata"]
|
| 107 |
+
|
| 108 |
+
# Process 'abs' transformation on meta_cols:
|
| 109 |
+
# Note: This transformation uses 'parallax' from meta_cols.
|
| 110 |
+
for col in METADATA_FUNC["abs"]:
|
| 111 |
+
if col in metadata["meta_cols"]:
|
| 112 |
+
# Use np.where to avoid issues when parallax is non-positive.
|
| 113 |
+
metadata["meta_cols"][col] = (
|
| 114 |
+
metadata["meta_cols"][col]
|
| 115 |
+
- 10
|
| 116 |
+
+ 5 * np.log10(np.where(metadata["meta_cols"]["parallax"] <= 0, 1, metadata["meta_cols"]["parallax"]))
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# Process 'cos' transformation on meta_cols:
|
| 120 |
+
for col in METADATA_FUNC["cos"]:
|
| 121 |
+
if col in metadata["meta_cols"]:
|
| 122 |
+
metadata["meta_cols"][col] = np.cos(np.radians(metadata["meta_cols"][col]))
|
| 123 |
+
|
| 124 |
+
# Process 'sin' transformation on meta_cols:
|
| 125 |
+
for col in METADATA_FUNC["sin"]:
|
| 126 |
+
if col in metadata["meta_cols"]:
|
| 127 |
+
metadata["meta_cols"][col] = np.sin(np.radians(metadata["meta_cols"][col]))
|
| 128 |
+
|
| 129 |
+
# Process 'log' transformation on photo_cols:
|
| 130 |
+
for col in METADATA_FUNC["log"]:
|
| 131 |
+
if col in metadata["photo_cols"]:
|
| 132 |
+
metadata["photo_cols"][col] = np.log10(metadata["photo_cols"][col])
|
| 133 |
+
|
| 134 |
+
# Update the example with the transformed metadata.
|
| 135 |
+
example["metadata"] = metadata
|
| 136 |
+
return example
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def compute_metadata_stats(ds):
|
| 140 |
+
"""
|
| 141 |
+
Compute the mean and standard deviation for each column in meta_cols and photo_cols.
|
| 142 |
+
"""
|
| 143 |
+
meta_vals = defaultdict(list)
|
| 144 |
+
photo_vals = defaultdict(list)
|
| 145 |
+
|
| 146 |
+
# Accumulate values for each column
|
| 147 |
+
for example in ds:
|
| 148 |
+
meta = example["metadata"]["meta_cols"]
|
| 149 |
+
photo = example["metadata"]["photo_cols"]
|
| 150 |
+
for col, value in meta.items():
|
| 151 |
+
meta_vals[col].append(value)
|
| 152 |
+
for col, value in photo.items():
|
| 153 |
+
photo_vals[col].append(value)
|
| 154 |
+
|
| 155 |
+
# Compute mean and standard deviation for each column
|
| 156 |
+
stats = {"meta_cols": {}, "photo_cols": {}}
|
| 157 |
+
for col, values in meta_vals.items():
|
| 158 |
+
arr = np.stack(values)
|
| 159 |
+
stats["meta_cols"][col] = {"mean": arr.mean(), "std": arr.std()}
|
| 160 |
+
for col, values in photo_vals.items():
|
| 161 |
+
arr = np.stack(values)
|
| 162 |
+
stats["photo_cols"][col] = {"mean": arr.mean(), "std": arr.std()}
|
| 163 |
+
|
| 164 |
+
return stats
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def normalize_metadata(example, info):
|
| 168 |
+
"""
|
| 169 |
+
Normalize metadata values using z-score normalization:
|
| 170 |
+
(value - mean) / std.
|
| 171 |
+
|
| 172 |
+
The 'stats' parameter should be a dictionary with computed means and stds for both meta_cols and photo_cols.
|
| 173 |
+
"""
|
| 174 |
+
metadata = example["metadata"]
|
| 175 |
+
|
| 176 |
+
# Normalize meta_cols
|
| 177 |
+
for col, value in metadata["meta_cols"].items():
|
| 178 |
+
mean = info["meta_cols"][col]["mean"]
|
| 179 |
+
std = info["meta_cols"][col]["std"]
|
| 180 |
+
metadata["meta_cols"][col] = (metadata["meta_cols"][col] - mean) / std
|
| 181 |
+
|
| 182 |
+
# Normalize photo_cols
|
| 183 |
+
for col, value in metadata["photo_cols"].items():
|
| 184 |
+
mean = info["photo_cols"][col]["mean"]
|
| 185 |
+
std = info["photo_cols"][col]["std"]
|
| 186 |
+
metadata["photo_cols"][col] = (metadata["photo_cols"][col] - mean) / std
|
| 187 |
+
|
| 188 |
+
example["metadata"] = metadata
|
| 189 |
+
return example
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def preprocess_metadata(example):
|
| 193 |
+
"""
|
| 194 |
+
Extract the values from 'meta_cols' and stack them into a numpy array.
|
| 195 |
+
"""
|
| 196 |
+
example["metadata"] = np.stack(list(example["metadata"]["meta_cols"].values()))
|
| 197 |
+
return example
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def main():
|
| 201 |
+
"""
|
| 202 |
+
Main function for processing and uploading datasets.
|
| 203 |
+
|
| 204 |
+
- Loads each dataset based on subset and random seed.
|
| 205 |
+
- Applies preprocessing for spectra, photometry, and metadata.
|
| 206 |
+
- Casts columns to appropriate feature types.
|
| 207 |
+
- Pushes the processed dataset to Hugging Face Hub.
|
| 208 |
+
"""
|
| 209 |
+
for sub in ["sub10", "sub25", "sub50", "full"]:
|
| 210 |
+
for seed in [42, 66, 0, 12, 123]:
|
| 211 |
+
name = f"{sub}_{seed}"
|
| 212 |
+
print(f"Processing: {name}")
|
| 213 |
+
|
| 214 |
+
# Load dataset from Hugging Face Hub
|
| 215 |
+
ds = load_dataset('MeriDK/AstroM3Dataset', name=name, trust_remote_code=True, num_proc=16)
|
| 216 |
+
ds = ds.with_format('numpy')
|
| 217 |
+
|
| 218 |
+
# Transform and normalize metadata
|
| 219 |
+
ds = ds.map(transform_metadata, num_proc=16)
|
| 220 |
+
info = compute_metadata_stats(ds['train'])
|
| 221 |
+
ds = ds.map(lambda example: normalize_metadata(example, info))
|
| 222 |
+
|
| 223 |
+
# Transform spectra
|
| 224 |
+
ds = ds.map(preprocess_spectra, num_proc=16)
|
| 225 |
+
ds = ds.cast_column('spectra', datasets.Array2D(shape=(3, 2575), dtype='float32'))
|
| 226 |
+
|
| 227 |
+
# Transform photometry
|
| 228 |
+
ds = ds.map(preprocess_lc, num_proc=16)
|
| 229 |
+
ds = ds.cast_column('photometry', datasets.Array2D(shape=(None, 9), dtype='float32'))
|
| 230 |
+
|
| 231 |
+
# Stack metadata into one numpy array
|
| 232 |
+
ds = ds.map(preprocess_metadata, num_proc=16)
|
| 233 |
+
ds = ds.cast_column('metadata', datasets.Sequence(feature=datasets.Value('float32'), length=34))
|
| 234 |
+
|
| 235 |
+
# Change label type
|
| 236 |
+
ds = ds.cast_column('label', datasets.ClassLabel(
|
| 237 |
+
names=['DSCT', 'EA', 'EB', 'EW', 'HADS', 'M', 'ROT', 'RRAB', 'RRC', 'SR']))
|
| 238 |
+
|
| 239 |
+
# Upload processed dataset to Hugging Face Hub
|
| 240 |
+
ds.push_to_hub('MeriDK/AstroM3Processed', config_name=name)
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
if __name__ == '__main__':
|
| 244 |
+
main()
|