utils made, baselines uploaded
Browse files- GBI-16-2D-Legacy.py +1 -60
- baseline_results_2d.csv +18 -0
- utils/__init__.py +1 -0
- utils/create_splits.py +77 -0
- utils/eval_baselines.py +136 -0
GBI-16-2D-Legacy.py
CHANGED
@@ -127,63 +127,4 @@ class GBI_16_2D_Legacy(datasets.GeneratorBasedBuilder):
|
|
127 |
# this data is natively formatted like (1, 4200, 2154)
|
128 |
# just use the 2D image
|
129 |
image_data = hdul[0].data[0,:,:].tolist()
|
130 |
-
yield task_instance_key, {**{"image": image_data}, **item}
|
131 |
-
|
132 |
-
def make_split_jsonl_files(config_type="tiny", data_dir="./data",
|
133 |
-
telescope_subdirectories=["INT", "JKT","LCO", "TJO", "WHT"],
|
134 |
-
outdir="./splits", seed=42):
|
135 |
-
"""
|
136 |
-
Create jsonl files for the GBI-16-2D-Legacy dataset.
|
137 |
-
|
138 |
-
config_type: str, default="tiny"
|
139 |
-
The type of split to create. Options are "tiny" and "full".
|
140 |
-
data_dir: str, default="./data"
|
141 |
-
The directory where the FITS files are located.
|
142 |
-
telescope_subdirectories: list, default=["INT", "JKT","LCO", "TJO", "WHT"]
|
143 |
-
The subdirectories of the data_dir that contain the FITS files for each telescope.
|
144 |
-
outdir: str, default="./splits"
|
145 |
-
The directory where the jsonl files will be created.
|
146 |
-
seed: int, default=42
|
147 |
-
The seed for the random split.
|
148 |
-
"""
|
149 |
-
random.seed(seed)
|
150 |
-
os.makedirs(outdir, exist_ok=True)
|
151 |
-
|
152 |
-
fits_files = []
|
153 |
-
for subdir in telescope_subdirectories:
|
154 |
-
fits_files.extend(glob(os.path.join(data_dir, subdir, "*.fits")))
|
155 |
-
|
156 |
-
random.shuffle(fits_files)
|
157 |
-
|
158 |
-
if config_type == "tiny":
|
159 |
-
train_files = []
|
160 |
-
test_files = []
|
161 |
-
for subdir in telescope_subdirectories:
|
162 |
-
subdir_files = [f for f in fits_files if subdir in f]
|
163 |
-
train_files.extend(subdir_files[:2])
|
164 |
-
test_files.extend(subdir_files[2:3])
|
165 |
-
elif config_type == "full":
|
166 |
-
train_files = []
|
167 |
-
test_files = []
|
168 |
-
for subdir in telescope_subdirectories:
|
169 |
-
subdir_files = [f for f in fits_files if subdir in f]
|
170 |
-
split_idx = int(0.8 * len(subdir_files))
|
171 |
-
train_files.extend(subdir_files[:split_idx])
|
172 |
-
test_files.extend(subdir_files[split_idx:])
|
173 |
-
else:
|
174 |
-
raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.")
|
175 |
-
|
176 |
-
def create_jsonl(files, split_name):
|
177 |
-
output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl")
|
178 |
-
with open(output_file, "w") as out_f:
|
179 |
-
for file in files:
|
180 |
-
print(file, flush=True, end="...")
|
181 |
-
with fits.open(file, memmap=False) as hdul:
|
182 |
-
image_id = os.path.basename(file).split(".fits")[0]
|
183 |
-
|
184 |
-
telescope = hdul[0].header.get('TELESCOP', 'UNKNOWN')
|
185 |
-
item = {"image_id": image_id, "image": file, "telescope": telescope}
|
186 |
-
out_f.write(json.dumps(item) + "\n")
|
187 |
-
|
188 |
-
create_jsonl(train_files, "train")
|
189 |
-
create_jsonl(test_files, "test")
|
|
|
127 |
# this data is natively formatted like (1, 4200, 2154)
|
128 |
# just use the 2D image
|
129 |
image_data = hdul[0].data[0,:,:].tolist()
|
130 |
+
yield task_instance_key, {**{"image": image_data}, **item}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
baseline_results_2d.csv
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,JPEG_XL_MAX_EFFORT_BPD,JPEG_XL_MAX_EFFORT_WRITE_RUNTIME,JPEG_XL_MAX_EFFORT_READ_RUNTIME,JPEG_XL_BPD,JPEG_XL_WRITE_RUNTIME,JPEG_XL_READ_RUNTIME,JPEG_2K_BPD,JPEG_2K_WRITE_RUNTIME,JPEG_2K_READ_RUNTIME,JPEG_LS_BPD,JPEG_LS_WRITE_RUNTIME,JPEG_LS_READ_RUNTIME,RICE_BPD,RICE_WRITE_RUNTIME,RICE_READ_RUNTIME
|
2 |
+
./data/LCO/ogg2m001.fits,,,,,,,,,,,,,,,
|
3 |
+
./data/LCO/coj0m403.fits,,,,,,,,,,,,,,,
|
4 |
+
./data/LCO/lsc0m409.fits,,,,,,,,,,,,,,,
|
5 |
+
./data/LCO/cpt0m407.fits,,,,,,,,,,,,,,,
|
6 |
+
./data/LCO/ogg0m404.fits,,,,,,,,,,,,,,,
|
7 |
+
./data/LCO/coj2m002.fits,,,,,,,,,,,,,,,
|
8 |
+
./data/LCO/coj0m405.fits,,,,,,,,,,,,,,,
|
9 |
+
./data/LCO/lsc0m412.fits,,,,,,,,,,,,,,,
|
10 |
+
./data/LCO/elp0m411.fits,,,,,,,,,,,,,,,
|
11 |
+
./data/LCO/ogg2m001.fits_hdu0,0.7228008563701923,43.20007514953613,0.5066413879394531,0.7646298922025241,0.4445362091064453,0.2911219596862793,0.7561227651742789,0.7407228946685791,0.6194639205932617,0.7517606295072116,0.14260530471801758,0.22156763076782227,0.8046292818509615,0.07075810432434082,0.044094085693359375
|
12 |
+
./data/LCO/coj0m403.fits_hdu0,0.6845067483669605,67.48599791526794,0.7721624374389648,0.7279621187963822,0.6539788246154785,0.4639432430267334,0.7265686903312462,1.1587002277374268,0.9693844318389893,0.7221424525065708,0.20934057235717773,0.1679387092590332,0.763859698709029,0.08583760261535645,0.06677007675170898
|
13 |
+
./data/LCO/lsc0m409.fits_hdu0,0.6610539990143784,46.64720416069031,0.6685361862182617,0.7128655617076376,0.6489887237548828,0.44870448112487793,0.7006576245555041,1.0780272483825684,0.9041671752929688,0.7085028880160018,0.2137744426727295,0.17609882354736328,0.7456735623937075,0.08374571800231934,0.06576395034790039
|
14 |
+
./data/LCO/cpt0m407.fits_hdu0,0.6880637730944651,47.97620415687561,0.7337470054626465,0.7368511324984539,0.6511118412017822,0.4521498680114746,0.7296890702303649,1.1380155086517334,0.9582910537719727,0.7261818701202072,0.20433974266052246,0.15947604179382324,0.7707059030998763,0.08529806137084961,0.06650400161743164
|
15 |
+
./data/LCO/ogg0m404.fits_hdu0,0.7123647488114564,52.49390196800232,0.5467383861541748,0.7629273744298856,0.6397292613983154,0.4389636516571045,0.7612617223736086,1.2026004791259766,1.0056798458099365,0.7506706695462276,0.19949769973754883,0.1565086841583252,0.797979143717146,0.08756709098815918,0.06797599792480469
|
16 |
+
./data/LCO/coj2m002.fits_hdu0,0.48990149864783655,31.05488395690918,0.4487757682800293,0.5265641432542068,0.3766806125640869,0.2681262493133545,0.5202474740835337,0.564016580581665,0.465839147567749,0.5321988619290865,0.11781430244445801,0.0965888500213623,0.5791156475360577,0.054184913635253906,0.04157567024230957
|
17 |
+
./data/LCO/coj0m405.fits_hdu0,0.7249306682900433,59.124993562698364,0.736142635345459,0.772575383136209,0.6583375930786133,0.4584355354309082,0.7651275087449753,1.193568468093872,1.008777141571045,0.758441196080705,0.20306921005249023,0.16224908828735352,0.8085132756938003,0.09140729904174805,0.07058954238891602
|
18 |
+
./data/LCO/lsc0m412.fits_hdu0,0.695435702690167,55.14425826072693,0.7698564529418945,0.7426116131822047,0.6599817276000977,0.44414687156677246,0.7424180520929963,1.2062599658966064,1.0164411067962646,0.7327258051658163,0.20291376113891602,0.1620502471923828,0.7762316041473407,0.08937621116638184,0.06872892379760742
|
utils/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .create_splits import *
|
utils/create_splits.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from glob import glob
|
4 |
+
import json
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
|
8 |
+
from astropy.io import fits
|
9 |
+
import datasets
|
10 |
+
from datasets import DownloadManager
|
11 |
+
from fsspec.core import url_to_fs
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
|
15 |
+
def make_split_jsonl_files(config_type="tiny", data_dir="./data",
|
16 |
+
telescope_subdirectories=["INT", "JKT","LCO", "TJO", "WHT"],
|
17 |
+
outdir="./splits", seed=42):
|
18 |
+
"""
|
19 |
+
Create jsonl files for the GBI-16-2D-Legacy dataset.
|
20 |
+
|
21 |
+
config_type: str, default="tiny"
|
22 |
+
The type of split to create. Options are "tiny" and "full".
|
23 |
+
data_dir: str, default="./data"
|
24 |
+
The directory where the FITS files are located.
|
25 |
+
telescope_subdirectories: list, default=["INT", "JKT","LCO", "TJO", "WHT"]
|
26 |
+
The subdirectories of the data_dir that contain the FITS files for each telescope.
|
27 |
+
outdir: str, default="./splits"
|
28 |
+
The directory where the jsonl files will be created.
|
29 |
+
seed: int, default=42
|
30 |
+
The seed for the random split.
|
31 |
+
"""
|
32 |
+
random.seed(seed)
|
33 |
+
os.makedirs(outdir, exist_ok=True)
|
34 |
+
|
35 |
+
fits_files = []
|
36 |
+
for subdir in telescope_subdirectories:
|
37 |
+
fits_files.extend(glob(os.path.join(data_dir, subdir, "*.fits")))
|
38 |
+
|
39 |
+
random.shuffle(fits_files)
|
40 |
+
|
41 |
+
if config_type == "tiny":
|
42 |
+
train_files = []
|
43 |
+
test_files = []
|
44 |
+
for subdir in telescope_subdirectories:
|
45 |
+
subdir_files = [f for f in fits_files if subdir in f]
|
46 |
+
train_files.extend(subdir_files[:2])
|
47 |
+
test_files.extend(subdir_files[2:3])
|
48 |
+
elif config_type == "full":
|
49 |
+
train_files = []
|
50 |
+
test_files = []
|
51 |
+
for subdir in telescope_subdirectories:
|
52 |
+
subdir_files = [f for f in fits_files if subdir in f]
|
53 |
+
split_idx = int(0.8 * len(subdir_files))
|
54 |
+
train_files.extend(subdir_files[:split_idx])
|
55 |
+
test_files.extend(subdir_files[split_idx:])
|
56 |
+
else:
|
57 |
+
raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.")
|
58 |
+
|
59 |
+
def create_jsonl(files, split_name):
|
60 |
+
output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl")
|
61 |
+
with open(output_file, "w") as out_f:
|
62 |
+
for file in files:
|
63 |
+
print(file, flush=True, end="...")
|
64 |
+
with fits.open(file, memmap=False) as hdul:
|
65 |
+
image_id = os.path.basename(file).split(".fits")[0]
|
66 |
+
|
67 |
+
telescope = hdul[0].header.get('TELESCOP', 'UNKNOWN')
|
68 |
+
item = {"image_id": image_id, "image": file, "telescope": telescope}
|
69 |
+
out_f.write(json.dumps(item) + "\n")
|
70 |
+
|
71 |
+
create_jsonl(train_files, "train")
|
72 |
+
create_jsonl(test_files, "test")
|
73 |
+
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
make_split_jsonl_files("tiny")
|
77 |
+
make_split_jsonl_files("full")
|
utils/eval_baselines.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Runs several baseline compression algorithms and stores results for each FITS file in a csv.
|
3 |
+
This code is written functionality-only and cleaning it up is a TODO.
|
4 |
+
|
5 |
+
Only runs on LCO data.
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
import os
|
10 |
+
import re
|
11 |
+
from pathlib import Path
|
12 |
+
import argparse
|
13 |
+
import os.path
|
14 |
+
from astropy.io import fits
|
15 |
+
import numpy as np
|
16 |
+
from time import time
|
17 |
+
import pandas as pd
|
18 |
+
from tqdm import tqdm
|
19 |
+
import glob
|
20 |
+
|
21 |
+
from astropy.io.fits import CompImageHDU
|
22 |
+
from imagecodecs import (
|
23 |
+
jpeg2k_encode,
|
24 |
+
jpeg2k_decode,
|
25 |
+
jpegls_encode,
|
26 |
+
jpegls_decode,
|
27 |
+
jpegxl_encode,
|
28 |
+
jpegxl_decode,
|
29 |
+
rcomp_encode,
|
30 |
+
rcomp_decode,
|
31 |
+
)
|
32 |
+
|
33 |
+
# Functions that require some preset parameters. All others default to lossless.
|
34 |
+
|
35 |
+
jpegxl_encode_max_effort_preset = lambda x: jpegxl_encode(x, lossless=True, effort=9)
|
36 |
+
jpegxl_encode_preset = lambda x: jpegxl_encode(x, lossless=True)
|
37 |
+
|
38 |
+
def find_matching_files(root_dir='./data/LCO'):
|
39 |
+
# Use glob to recursively find all .fits files
|
40 |
+
pattern = os.path.join(root_dir, '**', '*.fits')
|
41 |
+
fits_files = glob.glob(pattern, recursive=True)
|
42 |
+
return fits_files
|
43 |
+
|
44 |
+
def benchmark_imagecodecs_compression_algos(arr, compression_type):
|
45 |
+
|
46 |
+
encoder, decoder = ALL_CODECS[compression_type]
|
47 |
+
|
48 |
+
write_start_time = time()
|
49 |
+
encoded = encoder(arr)
|
50 |
+
write_time = time() - write_start_time
|
51 |
+
|
52 |
+
read_start_time = time()
|
53 |
+
if compression_type == "RICE":
|
54 |
+
decoded = decoder(encoded, shape=arr.shape, dtype=np.uint16)
|
55 |
+
else:
|
56 |
+
decoded = decoder(encoded)
|
57 |
+
read_time = time() - read_start_time
|
58 |
+
|
59 |
+
assert np.array_equal(arr, decoded)
|
60 |
+
|
61 |
+
buflength = len(encoded)
|
62 |
+
|
63 |
+
return {compression_type + "_BPD": buflength / arr.size,
|
64 |
+
compression_type + "_WRITE_RUNTIME": write_time,
|
65 |
+
compression_type + "_READ_RUNTIME": read_time,
|
66 |
+
#compression_type + "_TILE_DIVISOR": np.nan,
|
67 |
+
}
|
68 |
+
|
69 |
+
def main(dim):
|
70 |
+
|
71 |
+
save_path = f"baseline_results_{dim}.csv"
|
72 |
+
|
73 |
+
file_paths = find_matching_files()
|
74 |
+
|
75 |
+
df = pd.DataFrame(columns=columns, index=[str(p) for p in file_paths])
|
76 |
+
|
77 |
+
print(f"Number of files to be tested: {len(file_paths)}")
|
78 |
+
|
79 |
+
ct = 0
|
80 |
+
|
81 |
+
for path in tqdm(file_paths):
|
82 |
+
for hdu_idx in [0]:
|
83 |
+
with fits.open(path) as hdul:
|
84 |
+
if dim == '2d':
|
85 |
+
arr = hdul[hdu_idx].data[0]
|
86 |
+
else:
|
87 |
+
raise RuntimeError(f"{dim} not applicable.")
|
88 |
+
|
89 |
+
ct += 1
|
90 |
+
if ct % 1 == 0:
|
91 |
+
print(df.mean())
|
92 |
+
df.to_csv(save_path)
|
93 |
+
|
94 |
+
for algo in ALL_CODECS.keys():
|
95 |
+
try:
|
96 |
+
if algo == "JPEG_2K" and dim != '2d':
|
97 |
+
test_results = benchmark_imagecodecs_compression_algos(arr.transpose(1, 2, 0), algo)
|
98 |
+
else:
|
99 |
+
test_results = benchmark_imagecodecs_compression_algos(arr, algo)
|
100 |
+
|
101 |
+
for column, value in test_results.items():
|
102 |
+
if column in df.columns:
|
103 |
+
df.at[path + f"_hdu{hdu_idx}", column] = value
|
104 |
+
|
105 |
+
except Exception as e:
|
106 |
+
print(f"Failed at {path} under exception {e}.")
|
107 |
+
|
108 |
+
|
109 |
+
if __name__ == "__main__":
|
110 |
+
parser = argparse.ArgumentParser(description="Process some 2D or 3D data.")
|
111 |
+
parser.add_argument(
|
112 |
+
"dimension",
|
113 |
+
choices=['2d'],
|
114 |
+
help="Specify whether the data is 2d, or; not applicable here: 3dt (3d time dimension), or 3dw (3d wavelength dimension)."
|
115 |
+
)
|
116 |
+
args = parser.parse_args()
|
117 |
+
dim = args.dimension.lower()
|
118 |
+
|
119 |
+
# RICE REQUIRES UNIQUE INPUT OF ARR SHAPE AND DTYPE INTO DECODER
|
120 |
+
|
121 |
+
ALL_CODECS = {
|
122 |
+
"JPEG_XL_MAX_EFFORT": [jpegxl_encode_max_effort_preset, jpegxl_decode],
|
123 |
+
"JPEG_XL": [jpegxl_encode_preset, jpegxl_decode],
|
124 |
+
"JPEG_2K": [jpeg2k_encode, jpeg2k_decode],
|
125 |
+
"JPEG_LS": [jpegls_encode, jpegls_decode],
|
126 |
+
"RICE": [rcomp_encode, rcomp_decode],
|
127 |
+
}
|
128 |
+
|
129 |
+
columns = []
|
130 |
+
for algo in ALL_CODECS.keys():
|
131 |
+
columns.append(algo + "_BPD")
|
132 |
+
columns.append(algo + "_WRITE_RUNTIME")
|
133 |
+
columns.append(algo + "_READ_RUNTIME")
|
134 |
+
#columns.append(algo + "_TILE_DIVISOR")
|
135 |
+
|
136 |
+
main(dim)
|