import streamlit as st import torch import torch.nn as nn from torchvision import transforms from PIL import Image from io import BytesIO import requests button_style = """ """ DEVICE = 'cuda' @st.cache_resource class ConvAutoencoder(nn.Module): def __init__(self): super().__init__() # encoder self.conv1 = nn.Sequential( nn.Conv2d(1, 32, kernel_size=4), nn.BatchNorm2d(32), nn.SELU() ) self.conv2 = nn.Sequential( nn.Conv2d(32, 8, kernel_size=2), nn.BatchNorm2d(8), nn.SELU() ) self.pool = nn.MaxPool2d(2, 2, return_indices=True, ceil_mode=True) #<<<<<< Bottleneck #decoder # Как работает Conv2dTranspose https://github.com/vdumoulin/conv_arithmetic self.unpool = nn.MaxUnpool2d(2, 2) self.conv1_t = nn.Sequential( nn.ConvTranspose2d(8, 32, kernel_size=2), nn.BatchNorm2d(32), nn.SELU() ) self.conv2_t = nn.Sequential( nn.ConvTranspose2d(32, 1, kernel_size=4), nn.LazyBatchNorm2d(), nn.Sigmoid() ) def encode(self, x): x = self.conv1(x) x = self.conv2(x) x, indicies = self.pool(x) # ⟸ bottleneck return x, indicies def decode(self, x, indicies): x = self.unpool(x, indicies) x = self.conv1_t(x) x = self.conv2_t(x) return x def forward(self, x): latent, indicies = self.encode(x) out = self.decode(latent, indicies) return out model = ConvAutoencoder().to(DEVICE) model.load_state_dict(torch.load('D:\Bootcamp\phase_2\streamlit\\autoend.pt')) transform = transforms.Compose([ transforms.ToTensor(), # Преобразование изображения в тензор # Добавьте другие необходимые преобразования, такие как нормализация, если это необходимо ]) model.eval() image_source = st.radio("Choose the option of uploading the image of tumor:", ("File", "URL")) if image_source == "File": uploaded_file = st.file_uploader("Upload the image", type=["jpg", "png", "jpeg"]) if uploaded_file: image = Image.open(uploaded_file) else: url = st.text_input("Enter the URL of image...") if url: response = requests.get(url) image = Image.open(BytesIO(response.content)) st.markdown(button_style, unsafe_allow_html=True) model.to('cuda') if 'image' in locals(): st.image(image, caption="Uploaded image", use_column_width=True) bw_image = image.convert('L') image_tensor = transform(bw_image).unsqueeze(0) image_tensor = image_tensor.to('cuda') with torch.no_grad(): output = model(image_tensor) output = transforms.ToPILImage()(output[0].cpu()) if st.button("Detect tumor", type="primary"): st.image(output, caption="Annotated Image", use_column_width=True)