Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -9,14 +9,14 @@ tags:
|
|
9 |
- open-data
|
10 |
- government
|
11 |
- etalab
|
12 |
-
pretty_name: French State
|
13 |
size_categories:
|
14 |
- 1K<n<10K
|
15 |
license: etalab-2.0
|
16 |
---
|
17 |
-
# 🇫🇷 French State
|
18 |
|
19 |
-
This dataset is a processed and embedded version of the public data **Référentiel de l’organisation administrative de l’État** (French State
|
20 |
This information is also available on the official directory website of Service-Public.fr: https://lannuaire.service-public.fr/
|
21 |
|
22 |
The dataset provides semantic-ready, structured and chunked data of French state entities, including organizational details, missions, contact information, and hierarchical links. Each chunk of text is vectorized using the [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) embedding model to enable semantic search and retrieval tasks.
|
@@ -93,7 +93,7 @@ For example, if you want to load the dataset into a dataframe :
|
|
93 |
import pandas as pd
|
94 |
import json
|
95 |
|
96 |
-
df = pd.read_parquet("
|
97 |
df["embeddings_bge-m3"] = df["embeddings_bge-m3"].apply(json.loads)
|
98 |
```
|
99 |
|
|
|
9 |
- open-data
|
10 |
- government
|
11 |
- etalab
|
12 |
+
pretty_name: French State Administrations Directory
|
13 |
size_categories:
|
14 |
- 1K<n<10K
|
15 |
license: etalab-2.0
|
16 |
---
|
17 |
+
# 🇫🇷 French State Administrations Directory Dataset
|
18 |
|
19 |
+
This dataset is a processed and embedded version of the public data **Référentiel de l’organisation administrative de l’État** (French State Administrations Directory), published by **DILA** (Direction de l'information légale et administrative) on [data.gouv.fr](https://www.data.gouv.fr/fr/datasets/referentiel-de-lorganisation-administrative-de-letat/).
|
20 |
This information is also available on the official directory website of Service-Public.fr: https://lannuaire.service-public.fr/
|
21 |
|
22 |
The dataset provides semantic-ready, structured and chunked data of French state entities, including organizational details, missions, contact information, and hierarchical links. Each chunk of text is vectorized using the [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) embedding model to enable semantic search and retrieval tasks.
|
|
|
93 |
import pandas as pd
|
94 |
import json
|
95 |
|
96 |
+
df = pd.read_parquet("state-administrations-directory-latest.parquet")
|
97 |
df["embeddings_bge-m3"] = df["embeddings_bge-m3"].apply(json.loads)
|
98 |
```
|
99 |
|