Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -62,3 +62,48 @@ license: apache-2.0
|
|
| 62 |
task_categories:
|
| 63 |
- translation
|
| 64 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
task_categories:
|
| 63 |
- translation
|
| 64 |
---
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
## AfriMMD - African Multilingual Multimodal Dataset (POC)
|
| 68 |
+
AfriMMD is a multilingual dataset created to enhance linguistic diversity in AI,
|
| 69 |
+
focusing on African languages. This is a proof-of-concept experiment on the use
|
| 70 |
+
of multimodal datasets to represent African languages in AI. The dataset contains
|
| 71 |
+
translations of the captions in the widely-used Flickr8k dataset into 20 African
|
| 72 |
+
languages. The goal is to address the underrepresentation of African languages
|
| 73 |
+
in AI and foster more inclusive AI technologies. The image-text pairs have been
|
| 74 |
+
carefully translated into multiple African languages, providing an avenue
|
| 75 |
+
for advanced and inclusive AI development, particularly in multimodal tasks that
|
| 76 |
+
involve both text and images.
|
| 77 |
+
|
| 78 |
+
Images associated with the dataset can manually be downloaded from [Github](https://github.com/jbrownlee/Datasets/releases/tag/Flickr8k)
|
| 79 |
+
or [Kaggle](https://www.kaggle.com/datasets/adityajn105/flickr8k?select=Images)
|
| 80 |
+
|
| 81 |
+
## Supported Languages
|
| 82 |
+
Amharic (amh), Bemba (bem), Chokwe (cjk), Rek (dik), Dyula (dyu), Ewe (ewe),
|
| 83 |
+
Fulfulde (fuv), Hausa (hau), Igbo (ibo), Kikuyu (kik), Kabyle (kab),
|
| 84 |
+
Kamba (kam), Kikongo (kon), Kimbundu (kmb), LubaKasai (lua), Ganda (lug),
|
| 85 |
+
Lingala (lin), Kinyarwanda (kin), Yoruba (yor)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
## Load Dataset
|
| 89 |
+
```python
|
| 90 |
+
from datasets import load_dataset
|
| 91 |
+
|
| 92 |
+
dataset = load_dataset('AfriMM/AfriMMD')
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
## Applications
|
| 96 |
+
- Multilingual multimodal tasks (eg: image captioning in African languages, pre-trained vision-language models, etc.)
|
| 97 |
+
- Translation and language learning for supported African languages.
|
| 98 |
+
- Research on cross-cultural understanding and representation in AI.
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
## Citation
|
| 102 |
+
```bibtex
|
| 103 |
+
@dataset{afrimm2024,
|
| 104 |
+
author = {AfriMM - ML Collective},
|
| 105 |
+
title = {AfriMMD: Multimodal Dataset for African Languages},
|
| 106 |
+
year = 2024,
|
| 107 |
+
url = {https://huggingface.co/datasets/AfriMM/AfriMMD}
|
| 108 |
+
}
|
| 109 |
+
```
|