Datasets:
Tasks:
Translation
Size:
1K - 10K
Update tamil_eng_data.py
Browse files- tamil_eng_data.py +13 -72
tamil_eng_data.py
CHANGED
@@ -12,93 +12,33 @@
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
|
15 |
-
"""
|
16 |
-
|
17 |
|
|
|
18 |
import json
|
19 |
import os
|
20 |
|
21 |
import datasets
|
22 |
|
23 |
_CITATION = """\
|
24 |
-
@misc{
|
25 |
-
|
26 |
-
|
27 |
-
author = {A, Madhavaraj and Pilar, Bharathi and G, Ramakrishnan A},
|
28 |
-
title = {Subword Dictionary Learning and Segmentation Techniques for Automatic Speech Recognition in Tamil and Kannada},
|
29 |
-
publisher = {arXiv},
|
30 |
-
year = {2022},
|
31 |
-
}
|
32 |
-
@misc{mile_2,
|
33 |
-
doi = {10.48550/ARXIV.2207.13333},
|
34 |
-
url = {https://arxiv.org/abs/2207.13333},
|
35 |
-
author = {A, Madhavaraj and Pilar, Bharathi and G, Ramakrishnan A},
|
36 |
-
title = {Knowledge-driven Subword Grammar Modeling for Automatic Speech Recognition in Tamil and Kannada},
|
37 |
-
publisher = {arXiv},
|
38 |
year = {2022},
|
39 |
}
|
40 |
-
@
|
41 |
-
|
42 |
-
|
43 |
-
booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference (LREC)},
|
44 |
-
month = may,
|
45 |
-
year = {2020},
|
46 |
-
address = {Marseille, France},
|
47 |
-
publisher = {European Language Resources Association (ELRA)},
|
48 |
-
pages = {6494--6503},
|
49 |
-
url = {https://www.aclweb.org/anthology/2020.lrec-1.800},
|
50 |
-
ISBN = "{979-10-95546-34-4},
|
51 |
-
}
|
52 |
-
@misc{https://doi.org/10.48550/arxiv.2211.09536,
|
53 |
-
doi = {10.48550/ARXIV.2211.09536},
|
54 |
-
|
55 |
-
url = {https://arxiv.org/abs/2211.09536},
|
56 |
-
|
57 |
-
author = {Kumar, Gokul Karthik and S, Praveen and Kumar, Pratyush and Khapra, Mitesh M. and Nandakumar, Karthik},
|
58 |
-
|
59 |
-
keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
|
60 |
-
|
61 |
-
title = {Towards Building Text-To-Speech Systems for the Next Billion Users},
|
62 |
-
|
63 |
-
publisher = {arXiv},
|
64 |
-
|
65 |
year = {2022},
|
66 |
-
|
67 |
-
copyright = {arXiv.org perpetual, non-exclusive license}
|
68 |
-
}
|
69 |
-
@inproceedings{commonvoice:2020,
|
70 |
-
author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
|
71 |
-
title = {Common Voice: A Massively-Multilingual Speech Corpus},
|
72 |
-
booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
|
73 |
-
pages = {4211--4215},
|
74 |
-
year = 2020
|
75 |
-
}
|
76 |
-
@misc{https://doi.org/10.48550/arxiv.2205.12446,
|
77 |
-
doi = {10.48550/ARXIV.2205.12446},
|
78 |
-
|
79 |
-
url = {https://arxiv.org/abs/2205.12446},
|
80 |
-
|
81 |
-
author = {Conneau, Alexis and Ma, Min and Khanuja, Simran and Zhang, Yu and Axelrod, Vera and Dalmia, Siddharth and Riesa, Jason and Rivera, Clara and Bapna, Ankur},
|
82 |
-
|
83 |
-
keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
|
84 |
-
|
85 |
-
title = {FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech},
|
86 |
-
|
87 |
-
publisher = {arXiv},
|
88 |
-
|
89 |
-
year = {2022},
|
90 |
-
|
91 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
92 |
}
|
93 |
"""
|
94 |
-
|
95 |
_DESCRIPTION = """\
|
96 |
-
The
|
97 |
"""
|
98 |
|
99 |
_HOMEPAGE = ""
|
100 |
|
101 |
-
_LICENSE = "
|
102 |
|
103 |
|
104 |
_METADATA_URLS = {
|
@@ -111,8 +51,8 @@ _URLS = {
|
|
111 |
|
112 |
}
|
113 |
|
114 |
-
class
|
115 |
-
|
116 |
|
117 |
VERSION = datasets.Version("1.1.0")
|
118 |
def _info(self):
|
@@ -122,6 +62,7 @@ class TamilASRCorpus(datasets.GeneratorBasedBuilder):
|
|
122 |
"path": datasets.Value("string"),
|
123 |
"sentence": datasets.Value("string"),
|
124 |
"length": datasets.Value("float")
|
|
|
125 |
}
|
126 |
)
|
127 |
return datasets.DatasetInfo(
|
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
|
15 |
+
"""Simple sentences Dataset - contains 90 mins of speech data"""
|
|
|
16 |
|
17 |
+
import csv
|
18 |
import json
|
19 |
import os
|
20 |
|
21 |
import datasets
|
22 |
|
23 |
_CITATION = """\
|
24 |
+
@misc{simpledata_1,
|
25 |
+
title = {Whisper model for tamil-to-eng translation},
|
26 |
+
publisher = {Achitha},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
year = {2022},
|
28 |
}
|
29 |
+
@misc{simpledata_2,
|
30 |
+
title = {Fine-tuning whisper model},
|
31 |
+
publisher = {Achitha},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
year = {2022},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
}
|
34 |
"""
|
|
|
35 |
_DESCRIPTION = """\
|
36 |
+
The data contains roughly one and half hours of audio and transcripts in Tamil language.
|
37 |
"""
|
38 |
|
39 |
_HOMEPAGE = ""
|
40 |
|
41 |
+
_LICENSE = "MIT"
|
42 |
|
43 |
|
44 |
_METADATA_URLS = {
|
|
|
51 |
|
52 |
}
|
53 |
|
54 |
+
class simple_data(datasets.GeneratorBasedBuilder):
|
55 |
+
|
56 |
|
57 |
VERSION = datasets.Version("1.1.0")
|
58 |
def _info(self):
|
|
|
62 |
"path": datasets.Value("string"),
|
63 |
"sentence": datasets.Value("string"),
|
64 |
"length": datasets.Value("float")
|
65 |
+
|
66 |
}
|
67 |
)
|
68 |
return datasets.DatasetInfo(
|