Achitha commited on
Commit
2c90e21
·
1 Parent(s): 410705b

Update tamil_eng_data.py

Browse files
Files changed (1) hide show
  1. tamil_eng_data.py +13 -72
tamil_eng_data.py CHANGED
@@ -12,93 +12,33 @@
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
 
15
- """Filtered Tamil ASR corpus collected from common_voice 11, fleurs, openslr65, openslr127 and ucla corpora filtered for duration between 5 - 25 secs"""
16
-
17
 
 
18
  import json
19
  import os
20
 
21
  import datasets
22
 
23
  _CITATION = """\
24
- @misc{mile_1,
25
- doi = {10.48550/ARXIV.2207.13331},
26
- url = {https://arxiv.org/abs/2207.13331},
27
- author = {A, Madhavaraj and Pilar, Bharathi and G, Ramakrishnan A},
28
- title = {Subword Dictionary Learning and Segmentation Techniques for Automatic Speech Recognition in Tamil and Kannada},
29
- publisher = {arXiv},
30
- year = {2022},
31
- }
32
- @misc{mile_2,
33
- doi = {10.48550/ARXIV.2207.13333},
34
- url = {https://arxiv.org/abs/2207.13333},
35
- author = {A, Madhavaraj and Pilar, Bharathi and G, Ramakrishnan A},
36
- title = {Knowledge-driven Subword Grammar Modeling for Automatic Speech Recognition in Tamil and Kannada},
37
- publisher = {arXiv},
38
  year = {2022},
39
  }
40
- @inproceedings{he-etal-2020-open,
41
- title = {{Open-source Multi-speaker Speech Corpora for Building Gujarati, Kannada, Malayalam, Marathi, Tamil and Telugu Speech Synthesis Systems}},
42
- author = {He, Fei and Chu, Shan-Hui Cathy and Kjartansson, Oddur and Rivera, Clara and Katanova, Anna and Gutkin, Alexander and Demirsahin, Isin and Johny, Cibu and Jansche, Martin and Sarin, Supheakmungkol and Pipatsrisawat, Knot},
43
- booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference (LREC)},
44
- month = may,
45
- year = {2020},
46
- address = {Marseille, France},
47
- publisher = {European Language Resources Association (ELRA)},
48
- pages = {6494--6503},
49
- url = {https://www.aclweb.org/anthology/2020.lrec-1.800},
50
- ISBN = "{979-10-95546-34-4},
51
- }
52
- @misc{https://doi.org/10.48550/arxiv.2211.09536,
53
- doi = {10.48550/ARXIV.2211.09536},
54
-
55
- url = {https://arxiv.org/abs/2211.09536},
56
-
57
- author = {Kumar, Gokul Karthik and S, Praveen and Kumar, Pratyush and Khapra, Mitesh M. and Nandakumar, Karthik},
58
-
59
- keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
60
-
61
- title = {Towards Building Text-To-Speech Systems for the Next Billion Users},
62
-
63
- publisher = {arXiv},
64
-
65
  year = {2022},
66
-
67
- copyright = {arXiv.org perpetual, non-exclusive license}
68
- }
69
- @inproceedings{commonvoice:2020,
70
- author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
71
- title = {Common Voice: A Massively-Multilingual Speech Corpus},
72
- booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
73
- pages = {4211--4215},
74
- year = 2020
75
- }
76
- @misc{https://doi.org/10.48550/arxiv.2205.12446,
77
- doi = {10.48550/ARXIV.2205.12446},
78
-
79
- url = {https://arxiv.org/abs/2205.12446},
80
-
81
- author = {Conneau, Alexis and Ma, Min and Khanuja, Simran and Zhang, Yu and Axelrod, Vera and Dalmia, Siddharth and Riesa, Jason and Rivera, Clara and Bapna, Ankur},
82
-
83
- keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
84
-
85
- title = {FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech},
86
-
87
- publisher = {arXiv},
88
-
89
- year = {2022},
90
-
91
- copyright = {Creative Commons Attribution 4.0 International}
92
  }
93
  """
94
-
95
  _DESCRIPTION = """\
96
- The corpus contains roughly 1000 hours of audio and trasncripts in Tamil language. The transcripts have beedn de-duplicated using exact match deduplication.
97
  """
98
 
99
  _HOMEPAGE = ""
100
 
101
- _LICENSE = "https://creativecommons.org/licenses/"
102
 
103
 
104
  _METADATA_URLS = {
@@ -111,8 +51,8 @@ _URLS = {
111
 
112
  }
113
 
114
- class TamilASRCorpus(datasets.GeneratorBasedBuilder):
115
- """Tamil ASR Corpus contains transcribed speech corpus for training ASR systems for Tamil language."""
116
 
117
  VERSION = datasets.Version("1.1.0")
118
  def _info(self):
@@ -122,6 +62,7 @@ class TamilASRCorpus(datasets.GeneratorBasedBuilder):
122
  "path": datasets.Value("string"),
123
  "sentence": datasets.Value("string"),
124
  "length": datasets.Value("float")
 
125
  }
126
  )
127
  return datasets.DatasetInfo(
 
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
 
15
+ """Simple sentences Dataset - contains 90 mins of speech data"""
 
16
 
17
+ import csv
18
  import json
19
  import os
20
 
21
  import datasets
22
 
23
  _CITATION = """\
24
+ @misc{simpledata_1,
25
+ title = {Whisper model for tamil-to-eng translation},
26
+ publisher = {Achitha},
 
 
 
 
 
 
 
 
 
 
 
27
  year = {2022},
28
  }
29
+ @misc{simpledata_2,
30
+ title = {Fine-tuning whisper model},
31
+ publisher = {Achitha},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  year = {2022},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  }
34
  """
 
35
  _DESCRIPTION = """\
36
+ The data contains roughly one and half hours of audio and transcripts in Tamil language.
37
  """
38
 
39
  _HOMEPAGE = ""
40
 
41
+ _LICENSE = "MIT"
42
 
43
 
44
  _METADATA_URLS = {
 
51
 
52
  }
53
 
54
+ class simple_data(datasets.GeneratorBasedBuilder):
55
+
56
 
57
  VERSION = datasets.Version("1.1.0")
58
  def _info(self):
 
62
  "path": datasets.Value("string"),
63
  "sentence": datasets.Value("string"),
64
  "length": datasets.Value("float")
65
+
66
  }
67
  )
68
  return datasets.DatasetInfo(