Datasets:
File size: 3,686 Bytes
7d15f4c 278e4bb 7d15f4c 7ef8794 39dfef5 7d15f4c 39dfef5 9985b85 7d15f4c 9985b85 7ef8794 4f3d5a3 7d15f4c 9985b85 278e4bb 7d15f4c 278e4bb 7ef8794 278e4bb 8b241aa 278e4bb 7d15f4c 278e4bb 933cb55 278e4bb 933cb55 278e4bb 8b241aa 278e4bb 8b241aa 278e4bb 7d15f4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
"""Tamil Dataset - contains 90 mins of speech data"""
import csv
import json
import os
import datasets
_CITATION = """\
@misc{simpledata_1,
title = {Whisper model for tamil-to-eng translation},
publisher = {Achitha},
year = {2022},
}
@misc{simpledata_2,
title = {Fine-tuning whisper model},
publisher = {Achitha},
year = {2022},
}
"""
_DESCRIPTION = """\
The data contains roughly one and half hours of audio and trasncripts in Tamil language.
"""
_HOMEPAGE = ""
_LICENSE = ""
_METADATA_URLS = {
"train": "data/train.jsonl",
"test": "data/test.jsonl"
}
_URLS = {
"train": "data/train.tar.gz",
"test": "data/test.tar.gz",
}
class simple_data(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.1.0")
def _info(self):
features = datasets.Features(
{
"audio": datasets.Audio(sampling_rate=16_000),
"path": datasets.Value("string"),
"sentence": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=("sentence", "label"),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
metadata_paths = dl_manager.download(_METADATA_URLS)
train_archive = dl_manager.download(_URLS["train"])
test_archive = dl_manager.download(_URLS["test"])
local_extracted_train_archive = dl_manager.extract(train_archive) if not dl_manager.is_streaming else None
local_extracted_test_archive = dl_manager.extract(test_archive) if not dl_manager.is_streaming else None
test_archive = dl_manager.download(_URLS["test"])
train_dir = "train"
test_dir = "test"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"metadata_path": metadata_paths["train"],
"local_extracted_archive": local_extracted_train_archive,
"path_to_clips": train_dir,
"audio_files": dl_manager.iter_archive(train_archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"metadata_path": metadata_paths["test"],
"local_extracted_archive": local_extracted_test_archive,
"path_to_clips": test_dir,
"audio_files": dl_manager.iter_archive(test_archive),
},
),
]
def _generate_examples(self, metadata_path, local_extracted_archive, path_to_clips, audio_files):
"""Yields examples as (key, example) tuples."""
examples = {}
with open(metadata_path, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
examples[data["path"]] = data
inside_clips_dir = False
id_ = 0
for path, f in audio_files:
if path.startswith(path_to_clips):
inside_clips_dir = True
if path in examples:
result = examples[path]
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
result["audio"] = {"path": path, "bytes": f.read()}
result["path"] = path
yield id_, result
id_ += 1
elif inside_clips_dir:
break
|