File size: 4,391 Bytes
53221d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Simple sentences Dataset - contains 90 mins of speech data"""
import csv
import json
import os
import datasets
_CITATION = """\
@misc{simpledata_1,
title = {Whisper model for tamil-to-eng translation},
publisher = {Achitha},
year = {2022},
}
@misc{simpledata_2,
title = {Fine-tuning whisper model},
publisher = {Achitha},
year = {2022},
}
"""
_DESCRIPTION = """\
The data contains roughly one and half hours of audio and transcripts in Tamil language.
"""
_HOMEPAGE = ""
_LICENSE = "MIT"
_METADATA_URLS = {
"train": "data/train.jsonl",
"test": "data/test.jsonl"
}
_URLS = {
"train": "data/train.tar.gz",
"test": "data/test.tar.gz",
}
class simple_data(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.1.0")
def _info(self):
features = datasets.Features(
{
"audio": datasets.Audio(sampling_rate=16_000),
"path": datasets.Value("string"),
"sentence": datasets.Value("string"),
"length": datasets.Value("float")
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=("sentence", "label"),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
metadata_paths = dl_manager.download(_METADATA_URLS)
train_archive = dl_manager.download(_URLS["train"])
test_archive = dl_manager.download(_URLS["test"])
local_extracted_train_archive = dl_manager.extract(train_archive) if not dl_manager.is_streaming else None
local_extracted_test_archive = dl_manager.extract(test_archive) if not dl_manager.is_streaming else None
test_archive = dl_manager.download(_URLS["test"])
train_dir = "train"
test_dir = "test"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"metadata_path": metadata_paths["train"],
"local_extracted_archive": local_extracted_train_archive,
"path_to_clips": train_dir,
"audio_files": dl_manager.iter_archive(train_archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"metadata_path": metadata_paths["test"],
"local_extracted_archive": local_extracted_test_archive,
"path_to_clips": test_dir,
"audio_files": dl_manager.iter_archive(test_archive),
},
),
]
def _generate_examples(self, metadata_path, local_extracted_archive, path_to_clips, audio_files):
"""Yields examples as (key, example) tuples."""
examples = {}
with open(metadata_path, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
examples[data["path"]] = data
inside_clips_dir = False
id_ = 0
for path, f in audio_files:
if path.startswith(path_to_clips):
inside_clips_dir = True
if path in examples:
result = examples[path]
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
result["audio"] = {"path": path, "bytes": f.read()}
result["path"] = path
yield id_, result
id_ += 1
elif inside_clips_dir:
break
|