File size: 4,391 Bytes
53221d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Simple sentences Dataset - contains 90 mins of speech data"""

import csv
import json
import os

import datasets

_CITATION = """\
@misc{simpledata_1,
  title = {Whisper model for tamil-to-eng translation},
  publisher = {Achitha},
  year = {2022},
}
@misc{simpledata_2,
  title = {Fine-tuning whisper model},
  publisher = {Achitha},
  year = {2022},
}
"""
_DESCRIPTION = """\
The data contains roughly one and half hours of audio and transcripts in Tamil language.
"""

_HOMEPAGE = ""

_LICENSE = "MIT"


_METADATA_URLS = {
    "train": "data/train.jsonl",
    "test": "data/test.jsonl"
}
_URLS = {
    "train": "data/train.tar.gz",
    "test": "data/test.tar.gz",
    
}

class simple_data(datasets.GeneratorBasedBuilder):
   

    VERSION = datasets.Version("1.1.0")
    def _info(self):
        features = datasets.Features(
            {
                "audio": datasets.Audio(sampling_rate=16_000),
                "path": datasets.Value("string"),
                "sentence": datasets.Value("string"),
                "length": datasets.Value("float")
               
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=("sentence", "label"),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        metadata_paths = dl_manager.download(_METADATA_URLS)
        train_archive = dl_manager.download(_URLS["train"])
        test_archive = dl_manager.download(_URLS["test"])
        local_extracted_train_archive = dl_manager.extract(train_archive) if not dl_manager.is_streaming else None
        local_extracted_test_archive = dl_manager.extract(test_archive) if not dl_manager.is_streaming else None
        test_archive = dl_manager.download(_URLS["test"])
        train_dir = "train"
        test_dir = "test"

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "metadata_path": metadata_paths["train"],
                    "local_extracted_archive": local_extracted_train_archive,
                    "path_to_clips": train_dir,
                    "audio_files": dl_manager.iter_archive(train_archive),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "metadata_path": metadata_paths["test"],
                    "local_extracted_archive": local_extracted_test_archive,
                    "path_to_clips": test_dir,
                    "audio_files": dl_manager.iter_archive(test_archive),
                },
            ),
            
        ]
        
    def _generate_examples(self, metadata_path, local_extracted_archive, path_to_clips, audio_files):
        """Yields examples as (key, example) tuples."""
        examples = {}
        with open(metadata_path, encoding="utf-8") as f:
            for key, row in enumerate(f):
                data = json.loads(row)
                examples[data["path"]] = data
        inside_clips_dir = False
        id_ = 0
        for path, f in audio_files:
            if path.startswith(path_to_clips):
                inside_clips_dir = True
                if path in examples:
                    result = examples[path]
                    path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
                    result["audio"] = {"path": path, "bytes": f.read()}
                    result["path"] = path
                    yield id_, result
                    id_ += 1
            elif inside_clips_dir:
                break