yasintuncerr commited on
Commit
c3262a7
·
1 Parent(s): 6aea5a9

automatically export yolo seg dataset from base dataset files

Browse files
extract_yolo_seg_lane_marking_dataset.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import random
4
+ import argparse
5
+ import shutil
6
+ from tqdm import tqdm
7
+ import yaml
8
+ import utils
9
+ from safe_executor import SafeExecutor
10
+
11
+ class_mapping = {
12
+ "lm_dashed": 1,
13
+ "lm_solid": 0,
14
+ "lm_botts_dot": 0, # Treating as lm_solid
15
+ "lm_shaded": 0 # Treating as lm_solid
16
+ }
17
+
18
+ def extract_base_dataset(from_res):
19
+ os.system(f"python extract_base_dataset.py --from_res {from_res}")
20
+
21
+ def remove_cache_dir(cache_dir):
22
+ if os.path.exists(cache_dir):
23
+ shutil.rmtree(cache_dir)
24
+
25
+ def create_cache_dir(cache_dir):
26
+ utils.check_and_create_dir(cache_dir)
27
+
28
+ def load_annotations(file):
29
+ with open(file) as f:
30
+ return json.load(f)
31
+
32
+ def convert_and_save_annotations(annotated_files, cache_dir, from_res):
33
+ width, height = map(int, from_res.split('x'))
34
+ for file in tqdm(annotated_files, desc="Converting and saving annotations"):
35
+ base_name = os.path.basename(file)
36
+ output_file_path = os.path.join(cache_dir, f'{base_name}.txt')
37
+
38
+ lane_annotations_path = os.path.join(file, "annotations", "lane_markings.json")
39
+
40
+ try:
41
+ lane_annotations = load_annotations(lane_annotations_path)
42
+ except FileNotFoundError:
43
+ with open(output_file_path, 'w') as f:
44
+ f.write("")
45
+ continue
46
+
47
+ yolo_annotations = utils.convert_lane_annotations_to_yolo_seg_format(lane_annotations, class_mapping, width, height)
48
+
49
+ with open(output_file_path, 'w') as f:
50
+ if yolo_annotations:
51
+ for line in yolo_annotations:
52
+ f.write(f"{line}\n")
53
+ else:
54
+ # Create empty file if no annotations
55
+ f.write("")
56
+
57
+ def split_files(list_of_files, train_split=0.8):
58
+ random.shuffle(list_of_files)
59
+ split_index = int(len(list_of_files) * train_split)
60
+ return list_of_files[:split_index], list_of_files[split_index:]
61
+
62
+ def prepare_yolo_dataset(train_files, val_files, from_res):
63
+ dataset_dir = os.path.join(utils.ROOT_DIR, "dataset", f"yolo_seg_lane_{from_res}")
64
+ train_dir = os.path.join(dataset_dir, "train")
65
+ val_dir = os.path.join(dataset_dir, "val")
66
+
67
+ if os.path.exists(dataset_dir):
68
+ user_input = input(f"The dataset directory {dataset_dir} already exists. Do you want to remove it? (y/n): ")
69
+ if user_input.lower() == 'y':
70
+ shutil.rmtree(dataset_dir)
71
+ else:
72
+ print("Exiting without making changes.")
73
+ return
74
+
75
+ utils.check_and_create_dir(train_dir)
76
+ utils.check_and_create_dir(val_dir)
77
+
78
+ for file in tqdm(train_files, desc="Preparing YOLO train dataset"):
79
+ base_name = os.path.splitext(os.path.basename(file))[0]
80
+ image_file = os.path.join(utils.ROOT_DIR, "dataset", f'{from_res}_images', f'{base_name}.jpg')
81
+ if os.path.exists(image_file):
82
+ shutil.copy(os.path.join(utils.ROOT_DIR, '.cache', f'{from_res}_annotations', file), train_dir)
83
+ shutil.copy(image_file, train_dir)
84
+
85
+ for file in tqdm(val_files, desc="Preparing YOLO val dataset"):
86
+ base_name = os.path.splitext(os.path.basename(file))[0]
87
+ image_file = os.path.join(utils.ROOT_DIR, "dataset", f'{from_res}_images', f'{base_name}.jpg')
88
+ if os.path.exists(image_file):
89
+ shutil.copy(os.path.join(utils.ROOT_DIR, '.cache', f'{from_res}_annotations', file), val_dir)
90
+ shutil.copy(image_file, val_dir)
91
+
92
+ create_yaml_file(dataset_dir, train_dir, val_dir)
93
+
94
+ def create_yaml_file(dataset_dir, train_dir, val_dir):
95
+ yaml_content = {
96
+ 'path': dataset_dir,
97
+ 'train': 'train', # relative to 'path'
98
+ 'val': 'val', # relative to 'path'
99
+ 'names': {
100
+ 0: 'lm_solid',
101
+ 1: 'lm_dashed',
102
+ }
103
+ }
104
+
105
+ yaml_file_path = os.path.join(dataset_dir, 'dataset.yaml')
106
+ with open(yaml_file_path, 'w') as yaml_file:
107
+ yaml.dump(yaml_content, yaml_file, default_flow_style=False)
108
+
109
+ def main():
110
+ parser = argparse.ArgumentParser()
111
+ supported_resolutions = utils.get_supported_resolutions()
112
+ str_supported_resolutions = ', '.join(supported_resolutions)
113
+ parser.add_argument('--from_res', type=str, help=f'Choose available dataset: {str_supported_resolutions}', required=True)
114
+ parser.add_argument('--cache_enabled', type=bool, help='Enable caching', default=False)
115
+ args = parser.parse_args()
116
+
117
+ if args.from_res not in supported_resolutions:
118
+ print(f"Unsupported resolution. Supported resolutions are: {str_supported_resolutions}")
119
+ exit(1)
120
+
121
+ extract_base_dataset(args.from_res)
122
+
123
+ annotated_files = utils.get_annotated_files_list()
124
+
125
+ cache_dir = os.path.join(utils.ROOT_DIR, ".cache", f"{args.from_res}_annotations")
126
+ if not args.cache_enabled:
127
+ remove_cache_dir(cache_dir)
128
+ create_cache_dir(cache_dir)
129
+
130
+ paths_to_cleanup = [cache_dir, os.path.join(utils.ROOT_DIR, "dataset", f"yolo_seg_lane_{args.from_res}")]
131
+
132
+ with SafeExecutor(paths_to_cleanup):
133
+ convert_and_save_annotations(annotated_files, cache_dir, args.from_res)
134
+
135
+ list_of_files = os.listdir(cache_dir)
136
+ train_files, val_files = split_files(list_of_files)
137
+
138
+ prepare_yolo_dataset(train_files, val_files, args.from_res)
139
+
140
+ print("Annotations extracted and YOLO dataset prepared successfully")
141
+
142
+ if __name__ == "__main__":
143
+ main()