Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -21,6 +21,8 @@ source_datasets:
|
|
21 |
|
22 |
# E621 2024 SDXL VAE latents in 1k tar #
|
23 |
|
|
|
|
|
24 |
- Generated from [prepare_buckets_latents_v2.py](https://github.com/6DammK9/nai-anime-pure-negative-prompt/blob/main/ch06/sd-scripts-runtime/prepare_buckets_latents_v2.py), modified from [prepare_buckets_latents.py](https://github.com/kohya-ss/sd-scripts/blob/sd3/finetune/prepare_buckets_latents.py).
|
25 |
- Used for [kohya-ss/sd-scripts](https://github.com/kohya-ss/sd-scripts/blob/sd3/docs/train_README-ja.md#latents%E3%81%AE%E4%BA%8B%E5%89%8D%E5%8F%96%E5%BE%97). In theory it may replace `*.webp` and `*.txt` along with [meta_lat.json](https://huggingface.co/datasets/6DammK9/e621_2024-latents-sdxl-1ktar/blob/main/meta_lat.tar.gz).
|
26 |
- It took me around 10 days with 4x RTX 3090 to generate (with many PSU trips and I/O deadlocks). Perfect case would be 3-4 days only (18 it/s).
|
|
|
21 |
|
22 |
# E621 2024 SDXL VAE latents in 1k tar #
|
23 |
|
24 |
+
- Dedicated dataset to align both [NebulaeWis/e621-2024-webp-4Mpixel](https://huggingface.co/datasets/NebulaeWis/e621-2024-webp-4Mpixel) and [deepghs/e621_newest-webp-4Mpixel](https://huggingface.co/datasets/deepghs/e621_newest-webp-4Mpixel). "4MP-Focus" for average raw image resolution.
|
25 |
+
- Latents are ARB with maximum size of 1024x1024 as the recommended setting in kohyas. Major reason is to make sure I can finetune with RTX 3090. *VRAM usage will raise drastically after 1024.*
|
26 |
- Generated from [prepare_buckets_latents_v2.py](https://github.com/6DammK9/nai-anime-pure-negative-prompt/blob/main/ch06/sd-scripts-runtime/prepare_buckets_latents_v2.py), modified from [prepare_buckets_latents.py](https://github.com/kohya-ss/sd-scripts/blob/sd3/finetune/prepare_buckets_latents.py).
|
27 |
- Used for [kohya-ss/sd-scripts](https://github.com/kohya-ss/sd-scripts/blob/sd3/docs/train_README-ja.md#latents%E3%81%AE%E4%BA%8B%E5%89%8D%E5%8F%96%E5%BE%97). In theory it may replace `*.webp` and `*.txt` along with [meta_lat.json](https://huggingface.co/datasets/6DammK9/e621_2024-latents-sdxl-1ktar/blob/main/meta_lat.tar.gz).
|
28 |
- It took me around 10 days with 4x RTX 3090 to generate (with many PSU trips and I/O deadlocks). Perfect case would be 3-4 days only (18 it/s).
|