Merge branch 'main' of https://huggingface.co/datasets/1x-technologies/worldmodel
Browse files- README.md +46 -2
- unpack_data.py +32 -0
README.md
CHANGED
@@ -12,7 +12,51 @@ Download with:
|
|
12 |
huggingface-cli download 1x-technologies/worldmodel --repo-type dataset --local-dir data
|
13 |
```
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
- **magvit2.ckpt** - weights for [MAGVIT2](https://github.com/TencentARC/Open-MAGVIT2) image tokenizer we used. We provide the encoder (tokenizer) and decoder (de-tokenizer) weights.
|
18 |
|
@@ -25,7 +69,7 @@ Contents of train/val_v1.1:
|
|
25 |
- **neck_desired** `(N, 1)`: Desired neck pitch.
|
26 |
- **l_hand_closure** `(N, 1)`: Left hand closure state (0 = open, 1 = closed).
|
27 |
- **r_hand_closure** `(N, 1)`: Right hand closure state (0 = open, 1 = closed).
|
28 |
-
#### Index-to-Joint Mapping
|
29 |
```
|
30 |
{
|
31 |
0: HIP_YAW
|
|
|
12 |
huggingface-cli download 1x-technologies/worldmodel --repo-type dataset --local-dir data
|
13 |
```
|
14 |
|
15 |
+
Changes from v1.1:
|
16 |
+
- New train and val dataset of 100 hours, replacing the v1.1 datasets
|
17 |
+
- Blur applied to faces
|
18 |
+
|
19 |
+
Contents of train/val_v2.0:
|
20 |
+
|
21 |
+
The training dataset is shareded into 100 independent shards. The definitions are as follows:
|
22 |
+
|
23 |
+
- **video_{shard}.bin**: 8x8x8 image patches at 30hz, with 17 frame temporal window, encoded using [NVIDIA Cosmos Tokenizer](https://github.com/NVIDIA/Cosmos-Tokenizer) "Cosmos-Tokenizer-DV8x8x8".
|
24 |
+
- **segment_idx_{shard}.bin** - Maps each frame `i` to its corresponding segment index. You may want to use this to separate non-contiguous frames from different videos (transitions).
|
25 |
+
- **states_{shard}.bin** - States arrays (defined below in `Index-to-State Mapping`) stored in `np.float32` format. For frame `i`, the corresponding state is represented by `states_{shard}[i]`.
|
26 |
+
- **metadata** - The `metadata.json` file provides high-level information about the entire dataset, while `metadata_{shard}.json` files contain specific details for each shard.
|
27 |
+
|
28 |
+
#### Index-to-State Mapping (NEW)
|
29 |
+
```
|
30 |
+
{
|
31 |
+
0: HIP_YAW
|
32 |
+
1: HIP_ROLL
|
33 |
+
2: HIP_PITCH
|
34 |
+
3: KNEE_PITCH
|
35 |
+
4: ANKLE_ROLL
|
36 |
+
5: ANKLE_PITCH
|
37 |
+
6: LEFT_SHOULDER_PITCH
|
38 |
+
7: LEFT_SHOULDER_ROLL
|
39 |
+
8: LEFT_SHOULDER_YAW
|
40 |
+
9: LEFT_ELBOW_PITCH
|
41 |
+
10: LEFT_ELBOW_YAW
|
42 |
+
11: LEFT_WRIST_PITCH
|
43 |
+
12: LEFT_WRIST_ROLL
|
44 |
+
13: RIGHT_SHOULDER_PITCH
|
45 |
+
14: RIGHT_SHOULDER_ROLL
|
46 |
+
15: RIGHT_SHOULDER_YAW
|
47 |
+
16: RIGHT_ELBOW_PITCH
|
48 |
+
17: RIGHT_ELBOW_YAW
|
49 |
+
18: RIGHT_WRIST_PITCH
|
50 |
+
19: RIGHT_WRIST_ROLL
|
51 |
+
20: NECK_PITCH
|
52 |
+
21: Left hand closure state (0 = open, 1 = closed)
|
53 |
+
22: Right hand closure state (0 = open, 1 = closed)
|
54 |
+
23: Linear Velocity
|
55 |
+
24: Angular Velocity
|
56 |
+
}
|
57 |
+
|
58 |
+
|
59 |
+
Previous version: v1.1
|
60 |
|
61 |
- **magvit2.ckpt** - weights for [MAGVIT2](https://github.com/TencentARC/Open-MAGVIT2) image tokenizer we used. We provide the encoder (tokenizer) and decoder (de-tokenizer) weights.
|
62 |
|
|
|
69 |
- **neck_desired** `(N, 1)`: Desired neck pitch.
|
70 |
- **l_hand_closure** `(N, 1)`: Left hand closure state (0 = open, 1 = closed).
|
71 |
- **r_hand_closure** `(N, 1)`: Right hand closure state (0 = open, 1 = closed).
|
72 |
+
#### Index-to-Joint Mapping (OLD)
|
73 |
```
|
74 |
{
|
75 |
0: HIP_YAW
|
unpack_data.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Example script to unpack one shard of the 1xGPT v2.0 video dataset."""
|
2 |
+
|
3 |
+
import json
|
4 |
+
import pathlib
|
5 |
+
import subprocess
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
dir_path = pathlib.Path("val_v2.0")
|
10 |
+
rank = 0
|
11 |
+
|
12 |
+
# load metadata.json
|
13 |
+
metadata = json.load(open(dir_path / "metadata.json"))
|
14 |
+
metadata_shard = json.load(open(dir_path / f"metadata_{rank}.json"))
|
15 |
+
|
16 |
+
total_frames = metadata_shard["shard_num_frames"]
|
17 |
+
|
18 |
+
|
19 |
+
maps = [
|
20 |
+
("segment_idx", np.int32, []),
|
21 |
+
("states", np.float32, [25]),
|
22 |
+
]
|
23 |
+
|
24 |
+
video_path = dir_path / "video_0.mp4"
|
25 |
+
|
26 |
+
for m, dtype, shape in maps:
|
27 |
+
filename = dir_path / f"{m}_{rank}.bin"
|
28 |
+
print("Reading", filename, [total_frames] + shape)
|
29 |
+
m_out = np.memmap(filename, dtype=dtype, mode="r", shape=tuple([total_frames] + shape))
|
30 |
+
assert m_out.shape[0] == total_frames
|
31 |
+
print(m, m_out[:100])
|
32 |
+
|