Muennighoff commited on
Commit
0b13ee2
·
1 Parent(s): b407d09

Update eval

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +581 -0
  2. 4b284b84b20c4pyseed1/evaluation/4b284b84b20c4pyseed1_1_babi.json +22 -0
  3. 4b284b84b20c4pyseed2/evaluation/4b284b84b20c4pyseed2_1_babi.json +22 -0
  4. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_0.json +1 -0
  5. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_1.json +1 -0
  6. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_2.json +1 -0
  7. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_3.json +1 -0
  8. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_4.json +1 -0
  9. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_5.json +1 -0
  10. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_0.json +1 -0
  11. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_1.json +1 -0
  12. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_2.json +1 -0
  13. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_3.json +1 -0
  14. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_4.json +1 -0
  15. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_5.json +1 -0
  16. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_0.json +1 -0
  17. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_1.json +1 -0
  18. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_2.json +1 -0
  19. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_3.json +1 -0
  20. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_4.json +1 -0
  21. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_5.json +1 -0
  22. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_0.json +1 -0
  23. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_1.json +1 -0
  24. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_2.json +1 -0
  25. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_3.json +1 -0
  26. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_4.json +1 -0
  27. 4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_5.json +1 -0
  28. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_0.jsonl +3 -0
  29. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_1.jsonl +3 -0
  30. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_2.jsonl +3 -0
  31. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_3.jsonl +3 -0
  32. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_4.jsonl +3 -0
  33. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_5.jsonl +3 -0
  34. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_0.jsonl +3 -0
  35. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_1.jsonl +3 -0
  36. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_2.jsonl +3 -0
  37. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_3.jsonl +3 -0
  38. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_4.jsonl +3 -0
  39. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_5.jsonl +3 -0
  40. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl +3 -0
  41. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl +3 -0
  42. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl +3 -0
  43. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl +3 -0
  44. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl +3 -0
  45. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl +3 -0
  46. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_0.jsonl +3 -0
  47. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_1.jsonl +3 -0
  48. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_2.jsonl +3 -0
  49. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_3.jsonl +3 -0
  50. 4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_4.jsonl +3 -0
.gitattributes CHANGED
@@ -348,3 +348,584 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
348
  4b284b84b50c4pyseed1/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
349
  4b284b84b50c4pyseed3/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
350
  4b284b84b70c4pyseed3/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348
  4b284b84b50c4pyseed1/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
349
  4b284b84b50c4pyseed3/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
350
  4b284b84b70c4pyseed3/transformers/tokenizer.json filter=lfs diff=lfs merge=lfs -text
351
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
352
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
353
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
354
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
355
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
356
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
357
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
358
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
359
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
360
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
361
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
362
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
363
+ 4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
364
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
365
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
366
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
367
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
368
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
369
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
370
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
371
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
372
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
373
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
374
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
375
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
376
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
377
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
378
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
379
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
380
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
381
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
382
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
383
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
384
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
385
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
386
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
387
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
388
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
389
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
390
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
391
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
392
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
393
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
394
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
395
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
396
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
397
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
398
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
399
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
400
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
401
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
402
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
403
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
404
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
405
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
406
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
407
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
408
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
409
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
410
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
411
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
412
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
413
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
414
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
415
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
416
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
417
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
418
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
419
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
420
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
421
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
422
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
423
+ 4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
424
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
425
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
426
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
427
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
428
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
429
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
430
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
431
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
432
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
433
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
434
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
435
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
436
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
437
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
438
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
439
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
440
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
441
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
442
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
443
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
444
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
445
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
446
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
447
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
448
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
449
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
450
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
451
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
452
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
453
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
454
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
455
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
456
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
457
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
458
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
459
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
460
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
461
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
462
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
463
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
464
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
465
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
466
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
467
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
468
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
469
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
470
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
471
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
472
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
473
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
474
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
475
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
476
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
477
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
478
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
479
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
480
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
481
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
482
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
483
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
484
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
485
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
486
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
487
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
488
+ 4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
489
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
490
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
491
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
492
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
493
+ 4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
494
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
495
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
496
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
497
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
498
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
499
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
500
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
501
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
502
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
503
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
504
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
505
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
506
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
507
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
508
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
509
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
510
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
511
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
512
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
513
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
514
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
515
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
516
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
517
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
518
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
519
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
520
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
521
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
522
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
523
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
524
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
525
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
526
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
527
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
528
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
529
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
530
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
531
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
532
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
533
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
534
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
535
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
536
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
537
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
538
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
539
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
540
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
541
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
542
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
543
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
544
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
545
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
546
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
547
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
548
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
549
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
550
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
551
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
552
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
553
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
554
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
555
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
556
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
557
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
558
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
559
+ 4b284b84b30c4pyseed4/evaluation/generation/examples.4b284b84b30c4pyseed4_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
560
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
561
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
562
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
563
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
564
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
565
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
566
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
567
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
568
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
569
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
570
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
571
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
572
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
573
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
574
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
575
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
576
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
577
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
578
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
579
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
580
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
581
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
582
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
583
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
584
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
585
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
586
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
587
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
588
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
589
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
590
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
591
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
592
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
593
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
594
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
595
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
596
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
597
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
598
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
599
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
600
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
601
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
602
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
603
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
604
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
605
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
606
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
607
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
608
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
609
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
610
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
611
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
612
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
613
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
614
+ 4b284b84b80c4pyseed1/evaluation/generation/examples.4b284b84b80c4pyseed1_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
615
+ 4b284b84b90c4pyseed4/evaluation/generation/examples.4b284b84b90c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
616
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
617
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
618
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
619
+ 4b284b84b40c4pyseed2/evaluation/generation/examples.4b284b84b40c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
620
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
621
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
622
+ 4b284b84b40c4pyseed3/evaluation/generation/examples.4b284b84b40c4pyseed3_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
623
+ 4b284b84b50c4pyseed1/evaluation/generation/examples.4b284b84b50c4pyseed1_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
624
+ 4b284b84b80c4pyseed2/evaluation/generation/examples.4b284b84b80c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
625
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
626
+ 4b284b84b90c4pyseed1/evaluation/generation/examples.4b284b84b90c4pyseed1_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
627
+ 4b284b84b90c4pyseed3/evaluation/generation/examples.4b284b84b90c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
628
+ 4b284b84b40c4pyseed1/evaluation/generation/examples.4b284b84b40c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
629
+ 4b284b84b40c4pyseed4/evaluation/generation/examples.4b284b84b40c4pyseed4_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
630
+ 4b284b84b90c4pyseed2/evaluation/generation/examples.4b284b84b90c4pyseed2_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
631
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
632
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
633
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
634
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
635
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
636
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
637
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
638
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
639
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
640
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
641
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
642
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
643
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
644
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
645
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
646
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
647
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
648
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
649
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
650
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
651
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
652
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
653
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
654
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
655
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
656
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
657
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
658
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
659
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
660
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
661
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
662
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
663
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
664
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
665
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
666
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
667
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
668
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
669
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
670
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
671
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
672
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
673
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
674
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
675
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
676
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
677
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
678
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
679
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
680
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
681
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
682
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
683
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
684
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
685
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
686
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
687
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
688
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
689
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
690
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
691
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
692
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
693
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
694
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
695
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
696
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
697
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
698
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
699
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
700
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
701
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
702
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
703
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
704
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
705
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
706
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
707
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
708
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
709
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
710
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
711
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
712
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
713
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
714
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
715
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
716
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
717
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
718
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
719
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
720
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
721
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
722
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
723
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
724
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
725
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
726
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
727
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
728
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
729
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
730
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
731
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
732
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
733
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
734
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
735
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
736
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
737
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
738
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
739
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
740
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
741
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
742
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
743
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
744
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
745
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
746
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
747
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
748
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
749
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
750
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
751
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
752
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
753
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
754
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
755
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
756
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
757
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
758
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
759
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
760
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
761
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
762
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
763
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
764
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
765
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
766
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
767
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
768
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
769
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
770
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
771
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
772
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
773
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
774
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
775
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
776
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
777
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
778
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
779
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
780
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
781
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
782
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
783
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
784
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
785
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
786
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
787
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
788
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
789
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
790
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
791
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
792
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
793
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
794
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
795
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
796
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
797
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
798
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
799
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
800
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
801
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
802
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
803
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
804
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
805
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
806
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
807
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
808
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
809
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
810
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
811
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
812
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
813
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
814
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
815
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
816
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
817
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
818
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
819
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
820
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
821
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
822
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
823
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
824
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
825
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
826
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
827
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
828
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
829
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
830
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
831
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
832
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
833
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
834
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
835
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
836
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
837
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
838
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
839
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
840
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
841
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
842
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
843
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
844
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
845
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
846
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
847
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
848
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
849
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
850
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
851
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
852
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
853
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
854
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
855
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
856
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
857
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
858
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
859
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
860
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_gem_xsum_article_DOC_summary_2.jsonl filter=lfs diff=lfs merge=lfs -text
861
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_gem_xsum_article_DOC_summary_0.jsonl filter=lfs diff=lfs merge=lfs -text
862
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
863
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
864
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
865
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
866
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
867
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
868
+ 4b284b84b70c4pyseed2/evaluation/generation/examples.4b284b84b70c4pyseed2_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
869
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
870
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_gem_xsum_article_DOC_summary_4.jsonl filter=lfs diff=lfs merge=lfs -text
871
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
872
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
873
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_gem_xsum_article_DOC_summary_5.jsonl filter=lfs diff=lfs merge=lfs -text
874
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
875
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
876
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
877
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
878
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
879
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
880
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
881
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
882
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
883
+ 4b284b84b80c4pyseed4/evaluation/generation/examples.4b284b84b80c4pyseed4_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
884
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl filter=lfs diff=lfs merge=lfs -text
885
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
886
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
887
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
888
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
889
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
890
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
891
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
892
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
893
+ 4b284b84b60c4pyseed4/evaluation/generation/examples.4b284b84b60c4pyseed4_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
894
+ 4b284b84b50c4pyseed2/evaluation/generation/examples.4b284b84b50c4pyseed2_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
895
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_GEM-wiki_lingua_en_tldr_en_2.jsonl filter=lfs diff=lfs merge=lfs -text
896
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
897
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
898
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
899
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
900
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
901
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
902
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
903
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
904
+ 4b284b84b60c4pyseed1/evaluation/generation/examples.4b284b84b60c4pyseed1_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl filter=lfs diff=lfs merge=lfs -text
905
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
906
+ 4b284b84b70c4pyseed1/evaluation/generation/examples.4b284b84b70c4pyseed1_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
907
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_GEM-wiki_lingua_en_tldr_en_3.jsonl filter=lfs diff=lfs merge=lfs -text
908
+ 4b284b84b50c4pyseed4/evaluation/generation/examples.4b284b84b50c4pyseed4_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
909
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
910
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
911
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_GEM-wiki_lingua_en_tldr_en_5.jsonl filter=lfs diff=lfs merge=lfs -text
912
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_gem_xsum_article_DOC_summary_3.jsonl filter=lfs diff=lfs merge=lfs -text
913
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_GEM-web_nlg_en_PALM_prompt_0.jsonl filter=lfs diff=lfs merge=lfs -text
914
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_GEM-web_nlg_en_PALM_prompt_5.jsonl filter=lfs diff=lfs merge=lfs -text
915
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_GEM-web_nlg_en_PALM_prompt_4.jsonl filter=lfs diff=lfs merge=lfs -text
916
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl filter=lfs diff=lfs merge=lfs -text
917
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
918
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl filter=lfs diff=lfs merge=lfs -text
919
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_GEM-wiki_lingua_en_tldr_en_1.jsonl filter=lfs diff=lfs merge=lfs -text
920
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
921
+ 4b284b84b60c4pyseed2/evaluation/generation/examples.4b284b84b60c4pyseed2_GEM-web_nlg_en_PALM_prompt_3.jsonl filter=lfs diff=lfs merge=lfs -text
922
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_GEM-web_nlg_en_PALM_prompt_1.jsonl filter=lfs diff=lfs merge=lfs -text
923
+ 4b284b84b60c4pyseed3/evaluation/generation/examples.4b284b84b60c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl filter=lfs diff=lfs merge=lfs -text
924
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
925
+ 4b284b84b80c4pyseed3/evaluation/generation/examples.4b284b84b80c4pyseed3_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
926
+ 4b284b84b70c4pyseed3/evaluation/generation/examples.4b284b84b70c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
927
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_GEM-web_nlg_en_PALM_prompt_2.jsonl filter=lfs diff=lfs merge=lfs -text
928
+ 4b284b84b70c4pyseed4/evaluation/generation/examples.4b284b84b70c4pyseed4_GEM-wiki_lingua_en_tldr_en_4.jsonl filter=lfs diff=lfs merge=lfs -text
929
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl filter=lfs diff=lfs merge=lfs -text
930
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_GEM-wiki_lingua_en_tldr_en_0.jsonl filter=lfs diff=lfs merge=lfs -text
931
+ 4b284b84b50c4pyseed3/evaluation/generation/examples.4b284b84b50c4pyseed3_gem_xsum_article_DOC_summary_1.jsonl filter=lfs diff=lfs merge=lfs -text
4b284b84b20c4pyseed1/evaluation/4b284b84b20c4pyseed1_1_babi.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "babi": {
4
+ "em": 0.14366666666666666,
5
+ "em_stderr": 0.006404882983099177
6
+ }
7
+ },
8
+ "versions": {
9
+ "babi": 0
10
+ },
11
+ "config": {
12
+ "model": "gpt2",
13
+ "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed1/transformers",
14
+ "num_fewshot": 1,
15
+ "batch_size": null,
16
+ "device": null,
17
+ "no_cache": true,
18
+ "limit": 3000,
19
+ "bootstrap_iters": 100000,
20
+ "description_dict": {}
21
+ }
22
+ }
4b284b84b20c4pyseed2/evaluation/4b284b84b20c4pyseed2_1_babi.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "babi": {
4
+ "em": 0.12433333333333334,
5
+ "em_stderr": 0.006025248519778586
6
+ }
7
+ },
8
+ "versions": {
9
+ "babi": 0
10
+ },
11
+ "config": {
12
+ "model": "gpt2",
13
+ "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers",
14
+ "num_fewshot": 1,
15
+ "batch_size": null,
16
+ "device": null,
17
+ "no_cache": true,
18
+ "limit": 3000,
19
+ "bootstrap_iters": 100000,
20
+ "description_dict": {}
21
+ }
22
+ }
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.4566873637433896, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.04171275750706669}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.08013151650141224, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0017294577988268564}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3795374415761342, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005017436908817291}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.12276744278395338, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0021471410075118696}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.03513984258427368, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0010759946474805256}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.16666572056425177, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0035573137529048}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.053730634315541606, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0013189077197813435}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.07337882945118673, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0015177936661634483}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.3555900078739415, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004782574925832258}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.11287163544088477, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0018522182879951818}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.07405732752179109, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0016260827219099585}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3492466961546031, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0046584003586188525}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.11315870417480779, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.001982950486197804}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.976693618864981, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.061630939364807236}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.1730171971471858, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005088929024227535}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3298677592103368, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.005341705399576783}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.19037091341472273, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004321964615974723}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.0923536647984624, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.00355642887533611}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.17427948702211749, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003880958489422067}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.10052233113954025, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0030529980244174007}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.15393259124243422, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004527525717061557}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.30262851922526296, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0048193895100580005}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.17012081369280696, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003752007105934994}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.15871074823024298, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004642421206132867}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.30852749993712564, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004913141342139736}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.17514449803692753, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003880809618959943}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 0.9349537891787782, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.03704582676278757}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.1795166444550057, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005259893862042328}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.35764043977791166, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004938621932084185}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.20005575506137915, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004419377802866715}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.09822322138955239, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.003664678460888558}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.19122999597464396, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003790086940205767}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.10676335727269605, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.003139217438231927}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.1573907927956339, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0045443215979514015}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.3285740159582543, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.00444338893261678}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.17748714337937477, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003751399937851024}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.16365956298492673, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004755388204093966}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3359237816345443, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004551386005042936}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.18356125798867143, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003928732324619329}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 1.094709579610577, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.0493985442656341}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.18367165163068533, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.00545502024042113}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3642661594502384, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004950590966078976}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.20302707870848263, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004472346433861527}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.10192205102446326, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0037496182541275056}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.1948517918269168, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0037679514517740087}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.10867787455289588, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0030932641357335976}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.1617553455577212, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004703021840935981}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.3342720954543688, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004403123002097353}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.1803963516289461, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0037565238593825915}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.16830988239775493, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004942198489884146}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.34184632934524667, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004521321011897529}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.18652907827855758, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.003947368191086506}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 1.1177862437793673, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.07307626563035824}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.1927807342824238, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005432178015405661}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.3817185572694243, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004952403097374316}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.21314451156282038, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004518450821955466}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.10721256749890108, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.003727048216371875}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.2086888373395294, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003947847144411786}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.11585489800968087, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.003181625321491808}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.16767219176602025, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004617516752714605}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.3487953922309115, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004446274389132869}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.1878531641931752, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0037807271587212967}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.1757942511126047, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004888991972871046}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.3579983356157755, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.004570088807013087}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.19561352115303854, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004007849350522812}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "bleu": 1.1474061546586731, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.06817787374278929}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_precision": 0.20079051927529312, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.005665295015311522}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_recall": 0.38249897610207845, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004935021902818166}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge1_fmeasure": 0.21896275229061615, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.004632241823558397}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_precision": 0.11202876762088837, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.00394422201227027}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_recall": 0.20769519007495182, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.003924339317039723}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rouge2_fmeasure": 0.11830215027525598, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0032522823814636727}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_precision": 0.1750116095064551, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.004867141559615433}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_recall": 0.3484115408928102, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.004387839493066885}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeL_fmeasure": 0.19297346201665505, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.003896716230551459}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_precision": 0.18315556763615765, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0051350090417618096}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_recall": 0.35719208088696697, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0044999135081554825}, {"task_name": "GEM/web_nlg_en", "prompt_name": "PALM_prompt", "rougeLsum_fmeasure": 0.20040229526694836, "fixed_answer_choice_list": null, "dataset_path": "GEM/web_nlg", "dataset_name": "en", "subset": null, "prompt_id": "3e41305c-5461-4cf3-853d-8a6fb5747623", "prompt_jinja": "I will verbalize an abstract representation of a sentence in natural language. To do so, I will first show the representation and then the natural language. The text needs to include all of the information in the representation.\n\n{{input | join(\", \")}} {% for i in references %}\n ||| {{ i }} \n{% endfor %}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.004100277724023289}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.16977970490912914, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0024119477513689404}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.2564441988282595, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0030611620511316914}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.18708458296644578, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0022073021772218973}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.03885979774587731, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0009463458170511364}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.06055185191201908, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0015495751402024585}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.04302727430327886, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0009807683047437243}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.12728447839680865, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.001742988820772507}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.19865889907655795, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0024215094447148735}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.14161276316254343, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0015798276782780611}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.15796825667963893, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0022621898796415735}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.239231482439655, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002877668835277268}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.17409363392228006, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0020568890192305973}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 2.439718820353155, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.07881111517194886}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.25952567712570973, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004225795770465102}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.17952912645921132, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002581303713383915}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.17074008767045595, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002072670874711264}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.07402219577106685, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002768927245750037}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.03897540752282033, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0012577902748581657}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.0393318052917067, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0011967991979489894}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.2077791478588842, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0036163583096665603}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.13999657319878578, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.001999047734730003}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.13308120242339197, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0015841168812602419}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.2444697494584541, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00401608773102249}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.16850380771855358, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002409972571672059}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.16028176205081376, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0019333910034602605}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 2.279735482647864, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.12220911733024549}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.30628792207676564, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0042462670569900175}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.21390573551148073, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0028838119066257}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.2015607759643115, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0021721237983467565}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.09413184782203882, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002768345395563773}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.057217431451323165, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0014718780245642118}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.05506948058451802, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0012722313629100043}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.24730716738857272, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.003674313680590492}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.16727280829559604, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0022610405833798377}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.15804934379392085, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0016796891865478592}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.2904282881334348, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.004109816143616299}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.20092840129787973, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0027186402445142956}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.18972164711154813, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0020526975604159984}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 3.2390141827701533, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.09634757427181716}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.2791765056751806, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004588166665460471}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.179606245959838, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.003018808070376986}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.17493269113046403, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002448094705348431}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.0879440707514066, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0028238149580420966}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.049989627020017066, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.001474685636448651}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.049709982708703665, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.001322979708227306}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.22791847801599288, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.003998560620395579}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.14133679166670896, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0024012927167630788}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.13833041099179305, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0019417666942373347}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.26435511808588896, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.00442042854184108}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.16838225175109664, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002846200628159566}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.16439362540616356, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0023128858302394997}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 2.447359604987898, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.05596738952024762}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.09749503969018089, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0036960413326927568}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.061483167151380407, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.00238869130726887}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.06012725219423807, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0021347880639339353}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.03088518822141461, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.001971544208175106}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.016666998648706417, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.001034461607430358}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.016343501488990123, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0008990284903468757}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.08023661105837371, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0031706700160381617}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.0483614388565059, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0018944008212246875}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.04762528926657863, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.001696653475593262}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.09245150585849202, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003542054706046481}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.05761895748414913, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0022437428536673672}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.056405261286747055, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002000349564504214}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 0.05842455847422389, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.010838622083033654}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_precision": 0.017398271431029004, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.001802032747299438}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_recall": 0.009951117202542428, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0010540465346658581}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge1_fmeasure": 0.010000937804592401, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0009882839351866232}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_precision": 0.005974214547995557, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0010400832875565463}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_recall": 0.00256744973273724, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.00038500329065676556}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rouge2_fmeasure": 0.002771692242017539, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.00041509101953030253}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_precision": 0.014463288960549266, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0015673153539754075}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_recall": 0.007977767793433285, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0008691102034659934}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeL_fmeasure": 0.008020400765185889, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0008082178969379815}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_precision": 0.016556978849161495, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.001725914277510689}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_recall": 0.009442348338208905, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0010042613924910397}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "rougeLsum_fmeasure": 0.009445911317941029, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0009290598711413188}, {"task_name": "GEM/wiki_lingua_en", "prompt_name": "tldr_en", "bleu": 7.922895264529234e-15, "fixed_answer_choice_list": null, "dataset_path": "GEM/wiki_lingua", "dataset_name": "en", "subset": null, "prompt_id": "d3c5baa3-5e37-46f8-b1b2-5b834181c9da", "prompt_jinja": "{{source}}\n\nTL;DR in English: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 3.469396052681936e-13}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 0.8418632936010254, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.04570262593353431}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.2681285648479447, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0025458352299803032}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.29454928692600074, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.003071357623416771}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.2733417506648512, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002594316039420367}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.06354627578150131, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0012124440915771467}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.07429221221685309, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0015470080619830644}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.06659296394058786, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0012926084736410474}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.18557497905816428, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0017126229457607729}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.2051392605586183, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0021667782635303636}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.1895811027987602, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0017761834532334432}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.23428356458936292, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0021907262318864966}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.2574368088045318, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002719833928004565}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.2386675855610198, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0022494857463048598}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 15.33509324652678, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.14585185408369253}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6411622465650031, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0031654780065868823}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.49023369822808355, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.003088099653780206}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.529880316550524, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0023690295815329077}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.33215450125264323, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002906191638694528}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.24908763973249257, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0023426114433190907}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.2701091067522396, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002220106906559094}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.47448616165629726, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0032116303713089203}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.35729479930495883, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0025854975870946016}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.38827111444755036, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0022835660189894176}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5397207538613167, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0032832250941666075}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.41103066315176995, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0029176945787340656}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.44485545891487066, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0024730912067146816}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 17.575033896967255, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.22801456422232128}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6433831668895447, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0030113561654806003}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.5281591470019901, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002858954364768055}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.5603677022739998, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002257695806405197}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.3400494910486261, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0028248500846922947}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.27592695764755587, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002390983934215166}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.2932757550527822, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002283070012865533}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.46692691459607477, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002982467913049971}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3812475216372637, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002531244695561245}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.4052317498591298, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0022798891959455257}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5384927101758401, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003149478999040522}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.4419037425803392, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002821690301311373}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.46891862737799406, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002468708750617829}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 17.94667715970035, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.22824667775989868}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6323482519915987, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003039822582996741}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.5335102082112925, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0028158149854189073}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.560122082865681, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0022825085350975903}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.33507026697443565, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.002760027468917553}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.2804271791380373, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0024147669522524354}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.2947613070334558, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0022980687660404393}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.45649842517680034, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002871435591762191}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.38410661907128496, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0025117481338993507}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.40361490684680595, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002258547594448459}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5264607760005624, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0031187066803290047}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.44398704140639383, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002770211326324238}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.4662333495189877, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0024576420590712304}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 18.183753693418872, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.18024812915192717}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.625889470596239, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0029947825749488356}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.535733755745074, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002823299306371238}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.558903455644166, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0022688536378030104}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.32982553911206663, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0026827639990283756}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.28100770245166873, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.00242941431939421}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.2930200268649202, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.002276627453195378}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.4517803698666986, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002805742582545901}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3864856708376294, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0025638844332250203}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.40309716605240137, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002255069355625085}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.5237815655309983, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0030397776705564884}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.4494596671386987, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0028608854699670072}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.4684022122019933, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0024804534245162517}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "bleu": 18.11522078904566, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.17469364994488704}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_precision": 0.6263886197081054, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.002940303264580933}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_recall": 0.5372884597469872, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.002844524036201759}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge1_fmeasure": 0.5605304294193101, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0022573830247683176}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_precision": 0.3314947175253716, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0027364620560527153}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_recall": 0.2828416431576427, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002476785632464888}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rouge2_fmeasure": 0.29498072917088597, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0023212001512526873}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_precision": 0.4554797535937285, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.002821848373589568}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_recall": 0.3902734768542118, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002594870962193068}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeL_fmeasure": 0.40717680596899225, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0022823809282228225}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_precision": 0.525502071980597, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003019056745687853}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_recall": 0.4507907948060687, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0028171373878817557}, {"task_name": "e2e_nlg_cleaned", "prompt_name": "generate_text_restaurant", "rougeLsum_fmeasure": 0.47034195901178927, "fixed_answer_choice_list": null, "dataset_path": "e2e_nlg_cleaned", "dataset_name": null, "subset": null, "prompt_id": "1acabbc3-c9b9-4624-a684-29faeccff46f", "prompt_jinja": "Given the following data about a restaurant:\n{% for feature in meaning_representation.split(\"]\") %} {% set key = feature.split(\"[\")[0].replace(\",\",\"\") %} {% set value = feature.replace(\",\",\"\").replace(key+\"[\", '''') %}\n{% if value != \"\" %} {{key}} : {{value}} {% endif %}\n{%- endfor %}\nGenerate some text about this restaurant. ||| {{human_reference}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0024475836397415377}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_0.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.1470698246060944, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0019243917724561617}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.3475247469829817, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.004063442342111809}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.20303542824209975, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.002441004665109231}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.028731948815086807, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0009726503995296829}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.07034861053608676, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002355034321551589}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.040102265648327154, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0013339502031585793}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.10587434924618161, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0013538072531734636}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.25199732620062903, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0029559151411516584}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.146329919453155, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0017048467482258518}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.11529930290360653, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.001562643515700217}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.27453942005418547, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0034713044810172175}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.15952561205610286, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002017704501791085}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 1.439856632281147, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.06822684708928092}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 0, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_1.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.15095840918860529, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003188053471218362}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.25877061744122876, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0038509897744485673}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.1757605159398406, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0027472220913494767}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.028491128357670772, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0015755789338618093}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.04593260836929101, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002018262797223777}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.03196678740542163, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0014867047988357724}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.11673427432205882, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0024024151242775407}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.2030399765476515, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0029944497463596166}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.1366332187783938, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0020658238154863864}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.11722451385669269, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0024395407549077804}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.20409127755002643, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0031914868000499767}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.13722217511137388, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.00214346981487308}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 1.2217811020316016, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.06840542119043297}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 1, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_2.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.19402480863960286, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.003950875050747024}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.25097841974043267, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.003767093118074582}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.20069832491846035, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0031919605567153945}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.039651006262072894, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0020672600125511433}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.04618364004520737, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.002065781100118846}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.03906346864203417, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0018106626272673344}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.14651497441074995, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0030099599503074633}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.1921599987236622, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0029067234618592444}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.15217766877071176, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.0024124219502258053}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.14764636616992696, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0030291333046677544}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.1941957716886291, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0030770731718019937}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.15352159001936555, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.0024659172851433315}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 1.6768317510471253, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.16269527347493695}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 2, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_3.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.2053170760197189, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.004234128699988037}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.2302903365617423, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.003858227919003979}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.1996866003557034, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.003408469345950981}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.0419976266581763, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0021096896825636073}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.043966353996540745, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0019568483415029697}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.0396087404048656, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0018040944368988806}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.1540858541956654, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0032457313884529976}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.1743611863217317, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.002985820092944899}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.15008655207197924, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002599629186091767}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.15585048316047675, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.003270372080373561}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.17732381204269468, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0031347433232347803}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.1521428720078012, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002647208364014233}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 1.787803511162501, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.1319168963106112}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 3, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_4.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.06220473094322647, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0038558908824336655}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.0577027522014969, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.0034484912429517582}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.05347640399625581, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.003082619759629564}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.010981867773015921, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 0.0012957826860039584}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 0.010629635052452926, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 0.0011266538500568216}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 0.009604734553385888, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 0.0010077855521846498}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.0469650600477166, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0030211590605299645}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.04279807035692957, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.0025977945431546142}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.03954608348891395, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.002298110546257163}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.04764625247546423, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0030436512772068058}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.044158749458923646, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.002741835087839666}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.04042694086352471, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.002356794602860507}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 0.18774342136056824, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 0.04298342902518869}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 4, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/agg.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_5.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": [{"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_precision": 0.0020786109736983037, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_precision_stderr": 0.0005943014632383719}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_recall": 0.001725998557804699, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_recall_stderr": 0.000473176116885886}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge1_fmeasure": 0.001851671023487371, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge1_fmeasure_stderr": 0.0005177173092657066}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_precision": 0.00010762452493862039, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_precision_stderr": 7.621804552618544e-05}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_recall": 7.514498080535817e-05, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_recall_stderr": 5.331348543767693e-05}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rouge2_fmeasure": 8.848593754254133e-05, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rouge2_fmeasure_stderr": 6.27272270770533e-05}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_precision": 0.0017416942865275127, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_precision_stderr": 0.0004908287105334151}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_recall": 0.0014518669105667429, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_recall_stderr": 0.00039341739684817907}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeL_fmeasure": 0.001551690016861966, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeL_fmeasure_stderr": 0.00042752521041626286}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_precision": 0.0018344791360154406, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_precision_stderr": 0.0005194959006842913}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_recall": 0.0015318894560491223, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_recall_stderr": 0.0004145394502735452}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "rougeLsum_fmeasure": 0.0016364323185853998, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "rougeLsum_fmeasure_stderr": 0.00045145989564363584}, {"task_name": "gem_xsum", "prompt_name": "article_DOC_summary", "bleu": 3.9326021352895635e-39, "fixed_answer_choice_list": null, "dataset_path": "GEM/xsum", "dataset_name": null, "subset": "", "prompt_id": "a8d4ecfa-c944-44d5-878c-04fd5db59e64", "prompt_jinja": "Article: {{document}}\n\nSummary: ||| {{target}}", "prompt_original_task": true, "comment": "", "bleu_stderr": 6.351243810081871e-34}], "config": {"model": "hf-causal", "model_args": "pretrained=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/lm1-4b2-84b-c4pyseeds/4b284b84b20c4pyseed2/transformers,use_accelerate=True,tokenizer=/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/gpt2,dtype=bfloat16", "task_args": "", "num_fewshot": 5, "batch_size": 16, "device": "cuda", "use_cache": false, "limit": 3000, "bootstrap_iters": 10, "seed": 1234}}
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_0.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39c69ea932b2905b8c3b5193680778c46fa6418205d2c819bcd4c6b0bb6eb869
3
+ size 4212537
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_1.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50efc788046ae0952008e3c3a513902f93ca4e24eabd9202982b408f5aafaa60
3
+ size 4537010
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_2.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02b9d0092ca2e63f10bdacf1f91fc69f64b62ca3909b69aa3ce36f91ce98c5aa
3
+ size 5541852
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_3.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:614c96a395092644934d711cf665916109896e34916ad14fa2902cfd21cd3fca
3
+ size 6465251
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_4.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19222bd8e5300701b09b3eac52be6f9231b3826a12913e5097f3b53f67e6b7d2
3
+ size 7342620
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-web_nlg_en_PALM_prompt_5.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3be8b33c09ec3671cade55841b28a332c285791253f9b52478c0d21fe22f6d63
3
+ size 8242131
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_0.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fb7c3043a0e6e12ed584c5abc622506784bec79c626d1f2815298212178fba6
3
+ size 7593011
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_1.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c82d47df40ca504a3e5aafdd56b5c65ab79a94148fd7ecde2223f8c083099ca
3
+ size 12966008
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_2.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dcbdee7f351748942f247cd163b35b6371e3b73c743c4ec15dcb99ca5a42be5
3
+ size 18556164
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_3.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba3e755300291d7f0ef205174a2757ccc1d7e6462ad5dd0526fdd892ef37daef
3
+ size 24022348
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_4.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a0a18f26ae357947122e5944dd0cc2e2b8fbba058dc837b50a3e7a7f712dd1a
3
+ size 29368037
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_GEM-wiki_lingua_en_tldr_en_5.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:476194b8e016df16c5b0f6ab884acbc81bf6d4da9ee433c2d9099bad30b4be54
3
+ size 34783293
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_0.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff3f4eb08a91404d03f1b4c60bddd2e65a69a9b88abed2785e50669c1584b282
3
+ size 4270155
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_1.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab68e7824d22c15a52b98676629dc29feb9ec30da4bd547c6cb0897f82600997
3
+ size 5003084
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_2.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45bd8f88dc16cced835f6b25e7903c0f68791a6c084e93ccad096103b5477fbb
3
+ size 6105987
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_3.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0c6687f2eeb3d68f4da7c4c3f5d631c0191156eb8e24d85b5b000822a424622
3
+ size 7196414
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_4.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efde8acec7caf3a696ce580d1aa35385439cc2ac03ae9d8582af019568e53056
3
+ size 8278429
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_e2e_nlg_cleaned_generate_text_restaurant_5.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43a6a3e89cae17569e1bc243e88fbd26149fac39cdf247850447a14bc2855c47
3
+ size 9365345
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_0.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03332ab68bb89710cf7a1c75dd7fd7014b486264111108cc5cbea42781b63342
3
+ size 2835862
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_1.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:434ab0f9fa8e86c1294fe54cd5eb68b54d74c3902c3fceca9d190d26ba76b498
3
+ size 5038752
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_2.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3336c04b650eeda0dd04e2645d312849e1b544722a4abd924c8d1fe6c49acf72
3
+ size 7257873
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_3.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5702fce782c753efe71bf3a3bf2ba970c860ddfce2474e5fc4219081a9cbab
3
+ size 9508979
4b284b84b20c4pyseed2/evaluation/generation/examples.4b284b84b20c4pyseed2_gem_xsum_article_DOC_summary_4.jsonl CHANGED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb6bf3c0783d890d172284260108232af516bc74d9398a6178e8f6d8a70c9315
3
+ size 11637394