File size: 14,260 Bytes
2c16033
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcbe3afc320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcbe3afc3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcbe3afc440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcbe3afc4d0>", "_build": "<function ActorCriticPolicy._build at 0x7fcbe3afc560>", "forward": "<function ActorCriticPolicy.forward at 0x7fcbe3afc5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcbe3afc680>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcbe3afc710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcbe3afc7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcbe3afc830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcbe3afc8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcbe3b4e4b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652100549.7713337, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM18Oz5QQII/uil+PieeEr9XW9M+xoqKPQAAAAAAAAAAoHxhPk4JLz9QL/I9yesDv+wBBD8aXe09AAAAAAAAAACapwa8T8RGvGjoJT2w6yW+KrXlPC1toz0AAIA/AACAP0YoDT5yJG4/pSgGPiUBBb+bg7M+RhhWPQAAAAAAAAAAzdzturIiMz43tIW9GjK6vt5yW712kr28AAAAAAAAAABqJ4++bRctP99iuTynzhS/VHO+vkSpDz4AAAAAAAAAAPPJi732vHy6DSwat3eK+7FwFwU6XkY0NgAAgD8AAIA/DVLEvQ+CMrz9kc27DXsXPFt/lD2gBQO9AACAPwAAgD8z7/K84V6AuuxAgTzKMQ69udKBO83O+D0AAIA/AAAAAOZ51b3VTpE/Rdp3vnRUIb+NN0++UqXFvQAAAAAAAAAAs4TwvYysjD8Wd3u+j/4rvxpGUb5gIWc7AAAAAAAAAACa84q8KVhzunCubrmV3B453VPDOsoAFbcAAIA/AACAPzNHkLvDA1C8Td5UOyt9oTyqEri9qCyDPQAAgD8AAIA/zZi4PQLaWD/hOUs8LgYMv+nScT5qyA6+AAAAAAAAAAAz1Vu8ce5Lu5YnrDuhNvw7QuOUPIbc37wAAIA/AACAP82n3Lyz1hE/dkaWvdDQ4L6f5K68BqPFvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzR5oBUaAcECUhpRSlIwBbJRL2owBdJRHQKYuV/+bVjJ1fZQoaAZoCWgPQwgtXFZhs7JwQJSGlFKUaBVLzGgWR0CmLnsXrMTwdX2UKGgGaAloD0MIlrTiG8oJcECUhpRSlGgVS8toFkdApi54y2x6fXV9lChoBmgJaA9DCDFcHQAxYXJAlIaUUpRoFUvHaBZHQKYui03Ov+x1fZQoaAZoCWgPQwhVMgBUsYNxQJSGlFKUaBVL3mgWR0CmLv0Z3s5XdX2UKGgGaAloD0MIHlGhurkGb0CUhpRSlGgVS9JoFkdApi8QkiUxEnV9lChoBmgJaA9DCEaWzLH8PnFAlIaUUpRoFUvuaBZHQKYvcPuogmt1fZQoaAZoCWgPQwi9GMqJ9vZyQJSGlFKUaBVL3mgWR0CmL/YI0IkadX2UKGgGaAloD0MIPuqvV9hmcUCUhpRSlGgVS8NoFkdApjAOCCjDbnV9lChoBmgJaA9DCJBLHHngRXJAlIaUUpRoFUu4aBZHQKYwLS75Ec91fZQoaAZoCWgPQwh0mC8vwPFxQJSGlFKUaBVLxmgWR0CmMDJ35eqrdX2UKGgGaAloD0MI8iIT8Gv8cECUhpRSlGgVS8NoFkdApjB9PepGWnV9lChoBmgJaA9DCJkoQup2HnRAlIaUUpRoFUvMaBZHQKYxeeGwiaB1fZQoaAZoCWgPQwjzdK4oZYxzQJSGlFKUaBVL+2gWR0CmMax8+iaidX2UKGgGaAloD0MIf0+sU6XZcUCUhpRSlGgVS9JoFkdApjG929tdiXV9lChoBmgJaA9DCPGdmPXi53FAlIaUUpRoFUvmaBZHQKYxvdGAkLR1fZQoaAZoCWgPQwg1tAHYAH1wQJSGlFKUaBVLvGgWR0CmMf6fBeoldX2UKGgGaAloD0MIbHnlepsOckCUhpRSlGgVS99oFkdApjILb5/LDHV9lChoBmgJaA9DCPLtXYN+PnFAlIaUUpRoFUv8aBZHQKYyGJKraM91fZQoaAZoCWgPQwjknxnER1VzQJSGlFKUaBVNGwFoFkdApjJK4jKPn3V9lChoBmgJaA9DCJD5gEBn/nFAlIaUUpRoFUv3aBZHQKYyWeg+Qlt1fZQoaAZoCWgPQwjMe5xpwuhxQJSGlFKUaBVL4GgWR0CmMqFcIJJHdX2UKGgGaAloD0MIbVfogyUdcUCUhpRSlGgVS/NoFkdApkM5/I8yOHV9lChoBmgJaA9DCJEnSdeMA3JAlIaUUpRoFUvOaBZHQKZDY8Tzund1fZQoaAZoCWgPQwhGlzeHa5FyQJSGlFKUaBVL9WgWR0CmQ88MuvlmdX2UKGgGaAloD0MIpYY2AJvDcUCUhpRSlGgVS+5oFkdApkPL+1jRUnV9lChoBmgJaA9DCJFj6xnC9XBAlIaUUpRoFUvXaBZHQKZD3YdyT6l1fZQoaAZoCWgPQwha8+MvLS5RQJSGlFKUaBVLkGgWR0CmQ+/336AOdX2UKGgGaAloD0MITKq2m+B4c0CUhpRSlGgVTQ8BaBZHQKZEbAAyVOd1fZQoaAZoCWgPQwippE5AE4ttQJSGlFKUaBVL02gWR0CmRMjCgsbvdX2UKGgGaAloD0MINqs+V1uSbUCUhpRSlGgVS8ZoFkdApkTOrU9ZBHV9lChoBmgJaA9DCEBLV7DNt3NAlIaUUpRoFUvQaBZHQKZE6KeCkGl1fZQoaAZoCWgPQwhlyLH1jE9xQJSGlFKUaBVLsGgWR0CmRQiBXjlxdX2UKGgGaAloD0MIbCHIQQmRb0CUhpRSlGgVS8RoFkdApkVJSHdoFnV9lChoBmgJaA9DCGFVvfxONHBAlIaUUpRoFUvOaBZHQKZFRJ/5Lyt1fZQoaAZoCWgPQwiCqPsAZD9wQJSGlFKUaBVL6GgWR0CmRaLrPdEcdX2UKGgGaAloD0MIGckeoebncUCUhpRSlGgVS8VoFkdApkWvNmlImXV9lChoBmgJaA9DCBghPNo4IHBAlIaUUpRoFUvwaBZHQKZFtuR9w3p1fZQoaAZoCWgPQwhTzaylgLZQQJSGlFKUaBVLh2gWR0CmRfp5VwPzdX2UKGgGaAloD0MIYk7QJkcbckCUhpRSlGgVS7toFkdApkYoHoouw3V9lChoBmgJaA9DCCrgnucPeHJAlIaUUpRoFUviaBZHQKZG7iBoVVR1fZQoaAZoCWgPQwj5FADjGbQJwJSGlFKUaBVLdGgWR0CmRw+r+5vtdX2UKGgGaAloD0MI226Cb1q/cUCUhpRSlGgVS9FoFkdApkcUp7TlT3V9lChoBmgJaA9DCM0Ew7nGt3FAlIaUUpRoFUvQaBZHQKZHNbMX7+F1fZQoaAZoCWgPQwjnNAu0O25IQJSGlFKUaBVLpWgWR0CmR1+uvECOdX2UKGgGaAloD0MIBn+/mK2tb0CUhpRSlGgVS+doFkdApkdzbDdgv3V9lChoBmgJaA9DCAGh9fAlcnFAlIaUUpRoFUvVaBZHQKZHxZCfHxV1fZQoaAZoCWgPQwigwabOo35MQJSGlFKUaBVLf2gWR0CmR/VJL/S6dX2UKGgGaAloD0MIy03U0hxRcECUhpRSlGgVS9hoFkdApkggN0/4ZnV9lChoBmgJaA9DCH4eozxznHNAlIaUUpRoFUvlaBZHQKZIbwpe/pN1fZQoaAZoCWgPQwjkTBO23+xxQJSGlFKUaBVL52gWR0CmSNonSfDldX2UKGgGaAloD0MIJLVQMvk4ckCUhpRSlGgVS/loFkdApkjjILgGbHV9lChoBmgJaA9DCCwN/KhGm3BAlIaUUpRoFUvVaBZHQKZI9PYWcjJ1fZQoaAZoCWgPQwgxzXSvk8pwQJSGlFKUaBVL1WgWR0CmSP9xZMcqdX2UKGgGaAloD0MIk6mCUcksbkCUhpRSlGgVS91oFkdApkkJ7mdRSHV9lChoBmgJaA9DCH46HjMQbXNAlIaUUpRoFUvgaBZHQKZJofEGZ/l1fZQoaAZoCWgPQwjnpzgO/AZxQJSGlFKUaBVLwWgWR0CmSgJz90ihdX2UKGgGaAloD0MIOzdtxmm2b0CUhpRSlGgVS9FoFkdApkpsKqn3tnV9lChoBmgJaA9DCIqSkEgbWXJAlIaUUpRoFUvOaBZHQKZKjWuHN5d1fZQoaAZoCWgPQwj6RJ4kHQxyQJSGlFKUaBVL52gWR0CmSqeC04R3dX2UKGgGaAloD0MI63B0la6jckCUhpRSlGgVS/doFkdApkrHPcBU73V9lChoBmgJaA9DCNszSwLUeG9AlIaUUpRoFUvnaBZHQKZLCf5DZ151fZQoaAZoCWgPQwgmGM41zPByQJSGlFKUaBVLzWgWR0CmSysAeaKDdX2UKGgGaAloD0MIcsCuJs+6b0CUhpRSlGgVS9loFkdApksptUGVzXV9lChoBmgJaA9DCL8prFTQrXBAlIaUUpRoFUu6aBZHQKZLXH2h7E51fZQoaAZoCWgPQwj8/Pfg9YxyQJSGlFKUaBVL62gWR0CmS8k0Jng6dX2UKGgGaAloD0MIVisTfqm9VUCUhpRSlGgVS71oFkdApkvnQv6CUXV9lChoBmgJaA9DCPUSY5n+em9AlIaUUpRoFUvGaBZHQKZL8NQTEit1fZQoaAZoCWgPQwgmGw+2WJdvQJSGlFKUaBVLyGgWR0CmTBh2nsLOdX2UKGgGaAloD0MIryR5rm9Yc0CUhpRSlGgVS8xoFkdApkwybvw3HnV9lChoBmgJaA9DCPSo+L+jyHBAlIaUUpRoFUvYaBZHQKZMPBzFMqV1fZQoaAZoCWgPQwgQXVDfcnZxQJSGlFKUaBVLvmgWR0CmTI4y44IbdX2UKGgGaAloD0MIaaon84+IUUCUhpRSlGgVS5poFkdApkz9uLrHEXV9lChoBmgJaA9DCOv822W/Lm5AlIaUUpRoFUvGaBZHQKZNEoBJZnt1fZQoaAZoCWgPQwhGtYgo5vBxQJSGlFKUaBVLwWgWR0CmTYIxxkupdX2UKGgGaAloD0MIrADfbR7vcUCUhpRSlGgVS+toFkdApk4VSIgvDnV9lChoBmgJaA9DCDY656d40HJAlIaUUpRoFUvPaBZHQKZOZggow251fZQoaAZoCWgPQwjfqYB73o5xQJSGlFKUaBVL8mgWR0CmTp5uAI6bdX2UKGgGaAloD0MIm8b2WpArcUCUhpRSlGgVS7BoFkdApk66cLBsRHV9lChoBmgJaA9DCBHIJY48OXBAlIaUUpRoFUvbaBZHQKZO3YKYzBR1fZQoaAZoCWgPQwhOe0rOiUBwQJSGlFKUaBVL6GgWR0CmTt4BeXzEdX2UKGgGaAloD0MIYocx6W/Ab0CUhpRSlGgVS81oFkdApk9GGKyfMHV9lChoBmgJaA9DCBqIZTNH2HJAlIaUUpRoFUu+aBZHQKZPUxHoX9B1fZQoaAZoCWgPQwiTcCGPYMBzQJSGlFKUaBVL0GgWR0CmT4D/uLJkdX2UKGgGaAloD0MI2xX6YFlVcUCUhpRSlGgVS9ZoFkdApk/A6ZH/cXV9lChoBmgJaA9DCLq9pDGaXHBAlIaUUpRoFUv3aBZHQKZPzmaH9FZ1fZQoaAZoCWgPQwh9XBsqRotxQJSGlFKUaBVL6GgWR0CmUGuCXhOydX2UKGgGaAloD0MIByRh307ASECUhpRSlGgVS3xoFkdAplB+PRzBAXV9lChoBmgJaA9DCN82UyHenXJAlIaUUpRoFUvRaBZHQKZQgWPcSGt1fZQoaAZoCWgPQwhffxKf+y1yQJSGlFKUaBVL2WgWR0CmULXzMA3ldX2UKGgGaAloD0MIke18P3V3cUCUhpRSlGgVS8NoFkdAplDOOU+s5nV9lChoBmgJaA9DCEVJSKQtLXBAlIaUUpRoFU1oAWgWR0CmUNMlb/wRdX2UKGgGaAloD0MIgQpHkIozc0CUhpRSlGgVS9FoFkdAplIFuzhP03V9lChoBmgJaA9DCPwXCAIkF3BAlIaUUpRoFUvGaBZHQKZSD+jM3ZR1fZQoaAZoCWgPQwjedqG5ztxyQJSGlFKUaBVNAgFoFkdAplJd9tuUEHV9lChoBmgJaA9DCHY4ukq3kXFAlIaUUpRoFUvEaBZHQKZSfe/Ho5h1fZQoaAZoCWgPQwiHTs+7MWdyQJSGlFKUaBVLu2gWR0CmUocRlHz6dX2UKGgGaAloD0MI6njMQGXobUCUhpRSlGgVS81oFkdAplKYdfb9InV9lChoBmgJaA9DCG3i5H7HA3FAlIaUUpRoFUvsaBZHQKZSl4VRDTl1fZQoaAZoCWgPQwiF7pI4qxVyQJSGlFKUaBVL6mgWR0CmUquNPxhEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 508, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}